Your browser doesn't support javascript.
loading
Hybrid composites of lanthanide metal-organic frameworks with epoxy silanes for highly sensitive thermometry.
Shu, Ying; Guan, Huiru; Kirillov, Alexander M; Liu, Weisheng; Yang, Lizi; Dou, Wei.
Afiliación
  • Shu Y; State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. yanglz@lzu.edu.cn.
  • Guan H; State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. yanglz@lzu.edu.cn.
  • Kirillov AM; Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
  • Liu W; State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. yanglz@lzu.edu.cn.
  • Yang L; State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. yanglz@lzu.edu.cn.
  • Dou W; State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. yanglz@lzu.edu.cn.
Dalton Trans ; 51(41): 15954-15964, 2022 Oct 25.
Article en En | MEDLINE | ID: mdl-36196756
Post-synthetic modification of metal-organic frameworks (MOFs) and fabrication of hybrid composites are currently hot topics in the development of new functional materials. In this study, a facile and direct approach for coupling of lanthanide MOFs with epoxy silanes was developed, providing an access to a new series of functional composites. Two types of commercially available epoxy silane, namely 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (ECTMS) and (3-glycidoxypropyl)methyl diethoxysilane (KH563), were used to modify Ln-BTB MOFs ([Ln(BTB)(H2O)]n·2n(C6H12O); Ln = Tb or Eu0.001Tb0.999; H3BTB = 1,3,5-benzenetrisbenzoic acid) via covalent grafting involving mechanical grinding, epoxide coupling and curing reactions. The fabricated composites (Tb-BTB@ECTMS, Eu0.001Tb0.999-BTB@ECTMS, Tb-BTB@KH563, Eu0.001Tb0.999-BTB@KH563) and their Ln-MOF precursors were fully characterized, including a detailed study of their stability and fluorescence properties. The obtained composites show high thermal and solution stability, under boiling water conditions and in a wide pH range of 1-12. Application of the composites as temperature sensors in the 197-297 K and 273-343 K temperature ranges was explored in detail, revealing a remarkable sensing behavior. For example, Tb-BTB@ECTMS shows a maximum relative sensitivity (Sr) of 6.85% K-1 at 343 K. Eu0.001Tb0.999-BTB@ECTMS represents a white-light emission material with the CIE coordinates (0.3194, 0.3049) that are very close to those of white light, along with good temperature sensing performance and a relative sensitivity of 4.32% K-1 at 297 K. An enhanced performance of the composites in comparison with the parent MOF materials as well as the mechanism of energy transfer were rationalized by DFT calculations. By unveiling a facile and efficient method for improving the stability of luminescent MOFs, via post-synthetic grafting with epoxy silanes, the present study will stimulate further research at the interface of materials chemistry, MOF design, photoluminescence and temperature sensing.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Dalton Trans Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Dalton Trans Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article Pais de publicación: Reino Unido