Your browser doesn't support javascript.
loading
Electrochemical Sensor for Detection and Degradation Studies of Ethyl Violet Dye.
Yahya, Rashida; Shah, Afzal; Kokab, Tayyaba; Ullah, Naimat; Hakeem, Muhammad Kamran; Hayat, Mazhar; Haleem, Abdul; Shah, Iltaf.
Afiliación
  • Yahya R; Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
  • Shah A; Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
  • Kokab T; Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
  • Ullah N; Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
  • Hakeem MK; Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
  • Hayat M; Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
  • Haleem A; Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
  • Shah I; Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates.
ACS Omega ; 7(38): 34154-34165, 2022 Sep 27.
Article en En | MEDLINE | ID: mdl-36188263
In this work, a simple and sensitive electrochemical method was developed to determine ethyl violet (EV) dye in aqueous systems by using square wave anodic stripping voltammetry (SWASV) employing a glassy carbon electrode modified with acidic-functionalized carbon nanotubes (COOH-fCNTs). In square wave anodic stripping voltammetry, EV exhibited a well-defined oxidation peak at 0.86 V at the modified GCE. Impedance spectroscopy and cyclic voltammetry were used to examine the charge transduction and sensing capabilities of the modified electrode. The influence of pH, deposition potential, and accumulation time on the electro-oxidation of EV was optimized. Under the optimum experimental conditions, the limit of detection with a value of 0.36 nM demonstrates high sensitivity of COOH-fCNTs/GCE for EV. After detection, it was envisioned to devise a method for the efficient removal of EV from an aqueous system. In this regard a photocatalytic degradation method of EV using Ho/TiO2 nanoparticles was developed. The Ho/TiO2 nanoparticles synthesized by the sol-gel method were characterized by UV-vis, XRD, FTIR, SEM, and EDX. The photocatalytic degradation studies revealed that basic medium is more suitable for a higher degradation rate of EV than acidic and neutral media. The photodegradation kinetic parameters were evaluated using UV-vis spectroscopic and electrochemical methods. The results revealed that the degradation process of EV follows first-order kinetics.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: ACS Omega Año: 2022 Tipo del documento: Article País de afiliación: Pakistán Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: ACS Omega Año: 2022 Tipo del documento: Article País de afiliación: Pakistán Pais de publicación: Estados Unidos