Your browser doesn't support javascript.
loading
Spatial and temporal dynamics of microbial community composition and factors influencing the surface water and sediments of urban rivers.
Wang, Hongjie; Liu, Xingchun; Wang, Yali; Zhang, Shengqi; Zhang, Guangming; Han, Yangyang; Li, Mengxiang; Liu, Ling.
Afiliación
  • Wang H; College of Ecology and Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Baoding 071002, China.
  • Liu X; College of Ecology and Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Baoding 071002, China.
  • Wang Y; College of Ecology and Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Baoding 071002, China.
  • Zhang S; College of Ecology and Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Baoding 071002, China.
  • Zhang G; School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
  • Han Y; College of Ecology and Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Baoding 071002, China.
  • Li M; College of Ecology and Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Baoding 071002, China.
  • Liu L; College of Ecology and Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Baoding 071002, China. Electronic address: liuling@hbu.ed
J Environ Sci (China) ; 124: 187-197, 2023 Feb.
Article en En | MEDLINE | ID: mdl-36182129
The temporal and spatial characteristics of urban river bacterial communities help us understand the feedback mechanism of bacteria to changes in the aquatic environment. The Fuhe River plays an important role in determining the water ecological environment of Baiyangdian Lake. 16S rRNA gene sequencing was used to study the microbial distribution characteristics in the Fuhe River in different seasons. The results showed that some environmental factors of the surface water (ammonia nitrogen (NH3-N), total nitrogen (TN), and total phosphorus (TP)) were different on the spatial and temporal scales. Moreover, there were no seasonal differences in the contents of TN, TP, total organic carbon (TOC), or heavy metals in the sediments. The distributions of Cyanobacteria, Actinomycetes and Firmicutes in the water and Actinomycetes and Planctomycetes in the sediments differed significantly among seasons (P < 0.05). There were significant spatial differences in bacteria in the surface water, with the highest abundance of Proteobacteria recorded in the river along with the highest nutrient concentration, while the abundance of Bacteroidetes was higher in the upstream than the downstream. Microbial communities in the water were most sensitive to temperature (T) and the TP concentration (P < 0.01). Moreover, differences in the bacterial community were better explained by the content of heavy metals in the sediments than by the chemical characteristics. A PICRUSt metabolic inference analysis showed that the effect of high summer temperatures on the enzyme action led to an increase in the abundances of the metabolic-related genes of the river microorganisms.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Metales Pesados / Microbiota País/Región como asunto: Asia Idioma: En Revista: J Environ Sci (China) Asunto de la revista: SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Metales Pesados / Microbiota País/Región como asunto: Asia Idioma: En Revista: J Environ Sci (China) Asunto de la revista: SAUDE AMBIENTAL Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos