Your browser doesn't support javascript.
loading
Optically traceable PLGA-silica nanoparticles for cell-triggered doxorubicin delivery.
Raj, Ritu; Pinto, Sandra N; Crucho, Carina I C; Das, Surajit; Baleizão, Carlos; Farinha, José Paulo S.
Afiliación
  • Raj R; Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National I
  • Pinto SN; iBB-Institute of Bioengineering and Biosciences, i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. Electronic address: sandrapinto@tecnico.ulisboa.pt.
  • Crucho CIC; iBB-Institute of Bioengineering and Biosciences, i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. Electronic address: carina.crucho@tecnico.ulisboa.pt.
  • Das S; Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India. Electronic address: surajit@nitrkl.ac.in.
  • Baleizão C; Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. Electronic address: carlos.baleizao@tecnico.ulisboa.pt.
  • Farinha JPS; Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. Electronic address: farinha@tecnico.ulisboa.pt.
Colloids Surf B Biointerfaces ; 220: 112872, 2022 Dec.
Article en En | MEDLINE | ID: mdl-36179611
Fluorescent silica nanoparticles with a polymer shell of poly (D, L-lactide-co-glycolide) (PLGA) can provide traceable cell-triggered delivery of the anticancer drug doxorubicin (DOX), protecting the cargo while in transit and releasing it only intracellularly. PLGA with 50:50 lactide:glycolide ratio was grown by surface-initiated ring-opening polymerization (ROP) from silica nanoparticles of ca. 50 nm diameter, doped with a perylenediimide (PDI) fluorescent dye anchored to the silica structure. After loading DOX, release from the core-shell particles was evaluated in solution at physiological pH (7.4), and in human breast cancer cells (MCF-7) after internalization. The hybrid silica-PLGA nanoparticles can accommodate a large cargo of DOX, and the release in solution (PBS) due to PLGA hydrolysis is negligible for at least 72 h. However, once internalized in MCF-7 cells, the nanoparticles release the DOX cargo by degradation of the PLGA. Accumulation of DOX in the nucleus causes cell apoptosis, with the drug-loaded nanoparticles found to be as potent as free DOX. Our fluorescently traceable hybrid silica-PLGA nanoparticles with cell-triggered cargo release offer excellent prospects for the controlled delivery of anticancer drugs, protecting the cargo while in transit and efficiently releasing the drug once inside the cell.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Antineoplásicos Límite: Humans Idioma: En Revista: Colloids Surf B Biointerfaces Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Antineoplásicos Límite: Humans Idioma: En Revista: Colloids Surf B Biointerfaces Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article Pais de publicación: Países Bajos