Your browser doesn't support javascript.
loading
Learning Dynamic Patient-Robot Task Assignment and Scheduling for A Robotic Rehabilitation Gym.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Article en En | MEDLINE | ID: mdl-36176110
A robotic rehabilitation gym is a setup that allows multiple patients to exercise together using multiple robots. The effectiveness of training in such a group setting could be increased by dynamically assigning patients to specific robots. In this simulation study, we develop an automated system that dynamically makes patient-robot assignments based on measured patient performance to achieve optimal group rehabilitation outcome. To solve the dynamic assignment problem, we propose an approach that uses a neural network classifier to predict the assignment priority between two patients for a specific robot given their task success rate on that robot. The priority classifier is trained using assignment demonstrations provided by a domain expert. In the absence of real human data from a robotic gym, we develop a robotic gym simulator and create a synthetic dataset for training the classifier. The simulation results show that our approach makes effective assignments that yield comparable patient training outcomes to those obtained by the domain expert.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Robótica / Procedimientos Quirúrgicos Robotizados / Rehabilitación de Accidente Cerebrovascular Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: IEEE Int Conf Rehabil Robot Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Robótica / Procedimientos Quirúrgicos Robotizados / Rehabilitación de Accidente Cerebrovascular Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: IEEE Int Conf Rehabil Robot Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos