Structural evolution under physical and chemical stimuli of metastable Au-Fe nanoalloys obtained by laser ablation in liquid.
Faraday Discuss
; 242(0): 286-300, 2023 Jan 31.
Article
en En
| MEDLINE
| ID: mdl-36173019
Metastable alloy nanoparticles are investigated for their variety of appealing properties exploitable for photonics, magnetism, catalysis and nanobiotechnology. Notably, nanophases out of thermodynamic equilibrium feature a complex "ultrastructure" leading to a dynamic evolution of composition and atomic arrangement in response to physical-chemical stimuli. In this manuscript, metastable Au-Fe alloy nanoparticles were produced by laser ablation in liquid, an emerging versatile synthetic approach for freezing multielement nanosystems in non-equilibrium conditions. The Au-Fe nanoalloys were characterized through electron microscopy, elemental analysis, X-ray diffraction and Mössbauer spectroscopy. The dynamics of the structure of the Au-Fe system was tracked at high temperature under vacuum and atmospheric conditions, evidencing the intrinsic transformative nature of the metastable nanoalloy produced by laser ablation in liquid. This dynamic structure is relevant to possible application in several fields, from photocatalysis to nanomedicine, as demonstrated through an experiment of magnetic resonance imaging in biological fluids.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Faraday Discuss
Asunto de la revista:
QUIMICA
Año:
2023
Tipo del documento:
Article
País de afiliación:
Italia
Pais de publicación:
Reino Unido