Your browser doesn't support javascript.
loading
Identifying individuals with undiagnosed post-traumatic stress disorder in a large United States civilian population - a machine learning approach.
Gagnon-Sanschagrin, Patrick; Schein, Jeff; Urganus, Annette; Serra, Elizabeth; Liang, Yawen; Musingarimi, Primrose; Cloutier, Martin; Guérin, Annie; Davis, Lori L.
Afiliación
  • Gagnon-Sanschagrin P; Analysis Group, Inc., 1190 avenue des Canadiens-de-Montréal, 1190 avenue des Canadiens-de-Montréal, Tour Deloitte, Suite 1500, Montréal, QC, H3B 0G7, Canada. patrick.gagnon-sanschagrin@analysisgroup.com.
  • Schein J; Otsuka Pharmaceutical Development & Commercialization, Inc., 508 Carnegie Center, Princeton, NJ, 08540, USA.
  • Urganus A; Lundbeck LLC, 6 Parkway North, Deerfield, IL, 60015, USA.
  • Serra E; Analysis Group, Inc., 1190 avenue des Canadiens-de-Montréal, 1190 avenue des Canadiens-de-Montréal, Tour Deloitte, Suite 1500, Montréal, QC, H3B 0G7, Canada.
  • Liang Y; Analysis Group, Inc., 1190 avenue des Canadiens-de-Montréal, 1190 avenue des Canadiens-de-Montréal, Tour Deloitte, Suite 1500, Montréal, QC, H3B 0G7, Canada.
  • Musingarimi P; H. Lundbeck A/S, Ottiliavej 9, Valby, Copenhagen, Denmark.
  • Cloutier M; Analysis Group, Inc., 1190 avenue des Canadiens-de-Montréal, 1190 avenue des Canadiens-de-Montréal, Tour Deloitte, Suite 1500, Montréal, QC, H3B 0G7, Canada.
  • Guérin A; Analysis Group, Inc., 1190 avenue des Canadiens-de-Montréal, 1190 avenue des Canadiens-de-Montréal, Tour Deloitte, Suite 1500, Montréal, QC, H3B 0G7, Canada.
  • Davis LL; Research Service, Tuscaloosa Veterans Affairs Medical Center, 3701 Loop Rd East, Tuscaloosa, AL, 35404, USA.
BMC Psychiatry ; 22(1): 630, 2022 09 29.
Article en En | MEDLINE | ID: mdl-36171558
BACKGROUND: The proportion of patients with post-traumatic stress disorder (PTSD) that remain undiagnosed may be substantial. Without an accurate diagnosis, these patients may lack PTSD-targeted treatments and experience adverse health outcomes. This study used a machine learning approach to identify and describe civilian patients likely to have undiagnosed PTSD in the US commercial population. METHODS: The IBM® MarketScan® Commercial Subset (10/01/2015-12/31/2018) was used. A random forest machine learning model was developed and trained to differentiate between patients with and without PTSD using non-trauma-based features. The model was applied to patients for whom PTSD status could not be confirmed to identify individuals likely and unlikely to have undiagnosed PTSD. Patient characteristics, symptoms and complications potentially related to PTSD, treatments received, healthcare costs, and healthcare resource utilization were described separately for patients with PTSD (Actual Positive PTSD cohort), patients likely to have PTSD (Likely PTSD cohort), and patients without PTSD (Without PTSD cohort). RESULTS: A total of 44,342 patients were classified in the Actual Positive PTSD cohort, 5683 in the Likely PTSD cohort, and 2,074,471 in the Without PTSD cohort. While several symptoms/comorbidities were similar between the Actual Positive and Likely PTSD cohorts, others, including depression and anxiety disorders, suicidal thoughts/actions, and substance use, were more common in the Likely PTSD cohort, suggesting that certain symptoms may be exacerbated among those without a formal diagnosis. Mean per-patient-per-6-month healthcare costs were similar between the Actual Positive and Likely PTSD cohorts ($11,156 and $11,723) and were higher than those of the Without PTSD cohort ($3616); however, cost drivers differed between cohorts, with the Likely PTSD cohort experiencing more inpatient admissions and less outpatient visits than the Actual Positive PTSD cohort. CONCLUSIONS: These findings suggest that the lack of a PTSD diagnosis and targeted management of PTSD may result in a greater burden among undiagnosed patients and highlights the need for increased awareness of PTSD in clinical practice and among the civilian population.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Trastornos por Estrés Postraumático Tipo de estudio: Diagnostic_studies / Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: America do norte Idioma: En Revista: BMC Psychiatry Asunto de la revista: PSIQUIATRIA Año: 2022 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Trastornos por Estrés Postraumático Tipo de estudio: Diagnostic_studies / Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: America do norte Idioma: En Revista: BMC Psychiatry Asunto de la revista: PSIQUIATRIA Año: 2022 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Reino Unido