Single cobalt atom anchored on carbon nitride with cobalt nitrogen/oxygen active sites for efficient Fenton-like catalysis.
J Colloid Interface Sci
; 629(Pt B): 417-427, 2023 Jan.
Article
en En
| MEDLINE
| ID: mdl-36166968
As one of the tactics to produce reactive oxygen radicals, the Fenton-like process has been widely developed to solve the increasingly severe problem of environmental pollution. However, establishing advanced mediators with sufficient stability and activity for practical application is still a long-term objective. Herein, we proposed a facile strategy through polymeric carbon nitride (pCN) in-situ growth single cobalt atom for efficient degradation of antibiotics by peroxymonosulfate (PMS) activation. X-ray absorption spectroscopy and high-angle annular dark field-scanning transmission electron microscopy prove the single cobalt atoms are successfully anchored on pCN. Moreover, extended X-ray absorption fine structure analysis shows that the embedded cobalt atoms are constructed by covalently forming the Co-N bond and Co-O bond, which endow the single-atom cobalt catalyst with high stability. Experiment results indicate that the prepared single-atom cobalt catalyst can be used for efficient PMS activation catalytic degradation of tetracycline with a high degradation rate of 98.7 % in 60 min. And the CoN/O sites with single cobalt atoms serve as the active site for generating active radical species (singlet oxygen) from PMS activation. This work may expand the strategy for constructing single-atom catalysts and extend its application for the advanced oxidation process.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Colloid Interface Sci
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Estados Unidos