Your browser doesn't support javascript.
loading
Adipocyte-Specific Laminin Alpha 4 Deletion Preserves Adipose Tissue Health despite Increasing Adiposity.
Bailey, Jennifer L; Burk, David H; Burke, Susan J; Reed, Scott D; Ghosh, Sujoy; Elks, Carrie M.
Afiliación
  • Bailey JL; Matrix Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
  • Burk DH; Cell Biology and Bioimaging Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
  • Burke SJ; Immunogenetics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
  • Reed SD; North American Science Associates, Northwood, OH 43619, USA.
  • Ghosh S; Cardiovascular and Metabolic Disease Program and Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
  • Elks CM; Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
Biomedicines ; 10(9)2022 Aug 25.
Article en En | MEDLINE | ID: mdl-36140178
Laminins are heterotrimeric glycoproteins with structural and functional roles in basement membranes. The predominant laminin alpha chain found in adipocyte basement membranes is laminin α4 (LAMA4). Global LAMA4 deletion in mice leads to reduced adiposity and increased energy expenditure, but also results in vascular defects that complicate the interpretation of metabolic data. Here, we describe the generation and initial phenotypic analysis of an adipocyte-specific LAMA4 knockout mouse (Lama4AKO). We first performed an in-silico analysis to determine the degree to which laminin α4 was expressed in human and murine adipocytes. Next, male Lama4AKO and control mice were fed chow or high-fat diets and glucose tolerance was assessed along with serum insulin and leptin levels. Adipocyte area was measured in both epididymal and inguinal white adipose tissue (eWAT and iWAT, respectively), and eWAT was used for RNA-sequencing. We found that laminin α4 was highly expressed in human and murine adipocytes. Further, chow-fed Lama4AKO mice are like control mice in terms of body weight, body composition, and glucose tolerance, although they have larger eWAT adipocytes and lower insulin levels. High-fat-fed Lama4AKO mice are fatter and more glucose tolerant when compared to control mice. Transcriptionally, the eWAT of high-fat fed Lama4AKO mice resembles that of chow-fed control mice. We conclude from these findings that adipocyte-specific LAMA4 deletion is protective in an obesogenic environment, even though overall adiposity is increased.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biomedicines Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biomedicines Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza