Your browser doesn't support javascript.
loading
On the extreme hydrologic events determinants by means of Beta-Singh-Maddala reparameterization.
Domma, Filippo; Condino, Francesca; Franceschi, Sara; De Luca, Davide Luciano; Biondi, Daniela.
Afiliación
  • Domma F; Department of Economics, Statistics and Finance "Giovanni Anania", University of Calabria, Arcavacata di Rende, CS, Italy.
  • Condino F; Department of Economics, Statistics and Finance "Giovanni Anania", University of Calabria, Arcavacata di Rende, CS, Italy. francesca.condino@unical.it.
  • Franceschi S; Department of Economics and Statistics, University of Siena, Siena, Italy.
  • De Luca DL; Department of Informatics, Modelling, Electronics and System Engineering, University of Calabria, Arcavacata di Rende, CS, Italy.
  • Biondi D; Department of Informatics, Modelling, Electronics and System Engineering, University of Calabria, Arcavacata di Rende, CS, Italy.
Sci Rep ; 12(1): 15537, 2022 09 15.
Article en En | MEDLINE | ID: mdl-36109545
In previous studies, beta-k distribution and distribution functions strongly related to that, have played important roles in representing extreme events. Among these distributions, the Beta-Singh-Maddala turned out to be adequate for modelling hydrological extreme events. Starting from this distribution, the aim of the paper is to express the model as a function of indexes of hydrological interest and simultaneously investigate on their dependence with a set of explanatory variables in such a way to explore on possible determinants of extreme hydrologic events. Finally, an application to a real hydrologic dataset is considered in order to show the potentiality of the proposed model in describing data and in understanding effects of covariates on frequently adopted hydrological indicators.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hidrología Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hidrología Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido