Low-temperature infrared spectroscopy of the strongly correlated semiconductor Tm0.19Yb0.81B12with dynamic charge stripes.
J Phys Condens Matter
; 34(46)2022 Sep 26.
Article
en En
| MEDLINE
| ID: mdl-36103871
Tm1-xYbxB12dodecaborides represent model objects for the studies of quantum critical behavior, metal-insulator transitions (MITs) and complex charge-spin-orbital-phonon coupling phenomena. In spite of intensive investigations, the mechanism of semiconducting ground state formation both in YbB12and in the Yb-based strongly correlated electron systems remains a subject of active debates. We have performed first systematic measurements of temperature-dependent spectra of infrared conductivity of Tm0.19Yb81B12at frequencies 40-35 000 cm-1and in the temperature range 10-300 K. Analysis of the temperature evolution of the observed absorption resonances is performed allowing to associate these with the cooperative dynamic Jahn-Teller instability of the boron sub-lattice. This ferrodistortive effect of B12-complexes induces the rattling modes of the rare earth ions leading to emergence of both the intra-gap mixed-type collective excitations and the dynamic charge stripes. We estimate the temperature-dependent effective mass of charge carriers and propose the scenario of transformation of the many-body states in the multiple relaxation channels. We attribute the MIT to the localization of electrons at the vibrationally coupled Yb-Yb pairs, which is accompanied by the electronic phase separation and formation of the nanoscale filamentary structure of electron density (stripes) in Tm1-xYbxB12compounds.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Phys Condens Matter
Asunto de la revista:
BIOFISICA
Año:
2022
Tipo del documento:
Article
País de afiliación:
Rusia
Pais de publicación:
Reino Unido