Properties of 3D Printed Concrete-Geopolymer Hybrids Reinforced with Aramid Roving.
Materials (Basel)
; 15(17)2022 Sep 03.
Article
en En
| MEDLINE
| ID: mdl-36079513
Three-dimensional concrete printing (3DCP) is an innovative technology that can lead to breakthrough modifications of production processes in the construction industry. The paper presents for the first time the possibility of 3D printing concrete-geopolymer hybrids reinforced with aramid roving. Reference concrete samples and concrete-geopolymer hybrids composed of 95% concrete and 5% geopolymer based on fly ash or metakaolin were produced. The properties of the samples without reinforcement and samples with 0.5% (wt.) aramid roving were compared. The frost resistance tests, UV radiation resistance, and thermal conductivity were evaluated for samples that were 3D-printed or produced by the conventional casting method. Compressive strength tests were carried out for each sample exposed to freeze-thaw cycles and UV radiation. It was observed that after the frost resistance test, the samples produced by the 3D printing technology had a minor decrease in strength properties compared to the samples made by casting. Moreover, the thermal conductivity coefficient was higher for concrete-geopolymer hybrids than concrete reinforced with aramid roving.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Materials (Basel)
Año:
2022
Tipo del documento:
Article
País de afiliación:
Polonia
Pais de publicación:
Suiza