Your browser doesn't support javascript.
loading
LiNi0.5Mn1.5O4 Cathode Microstructure for All-Solid-State Batteries.
Lee, Hyeon Jeong; Liu, Xiaoxiao; Chart, Yvonne; Tang, Peng; Bae, Jin-Gyu; Narayanan, Sudarshan; Lee, Ji Hoon; Potter, Richard J; Sun, Yongming; Pasta, Mauro.
Afiliación
  • Lee HJ; Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
  • Liu X; The Faraday Institution, Harwell Campus, Quad One, Becquerel Avenue, Didcot OX11 0RA, United Kingdom.
  • Chart Y; Division of Chemical Engineering and Bioengineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea.
  • Tang P; Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
  • Bae JG; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China.
  • Narayanan S; Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
  • Lee JH; The Faraday Institution, Harwell Campus, Quad One, Becquerel Avenue, Didcot OX11 0RA, United Kingdom.
  • Potter RJ; Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
  • Sun Y; School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
  • Pasta M; Department of Materials, University of Oxford, Oxford OX1 3PH, U.K.
Nano Lett ; 22(18): 7477-7483, 2022 Sep 28.
Article en En | MEDLINE | ID: mdl-36069205
Solid-state batteries (SSBs) have received attention as a next-generation energy storage technology due to their potential to superior deliver energy density and safety compared to commercial Li-ion batteries. One of the main challenges limiting their practical implementation is the rapid capacity decay caused by the loss of contact between the cathode active material and the solid electrolyte upon cycling. Here, we use the promising high-voltage, low-cost LiNi0.5Mn1.5O4 (LNMO) as a model system to demonstrate the importance of the cathode microstructure in SSBs. We design Al2O3-coated LNMO particles with a hollow microstructure aimed at suppressing electrolyte decomposition, minimizing volume change during cycling, and shortening the Li diffusion pathway to achieve maximum cathode utilization. When cycled with a Li6PS5Cl solid electrolyte, we demonstrate a capacity retention above 70% after 100 cycles, with an active material loading of 27 mg cm-2 (2.2 mAh cm-2) at a current density of 0.8 mA cm-2.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos