Your browser doesn't support javascript.
loading
Sub-10-fs observation of bound exciton formation in organic optoelectronic devices.
Maimaris, Marios; Pettipher, Allan J; Azzouzi, Mohammed; Walke, Daniel J; Zheng, Xijia; Gorodetsky, Andrei; Dong, Yifan; Tuladhar, Pabitra Shakya; Crespo, Helder; Nelson, Jenny; Tisch, John W G; Bakulin, Artem A.
Afiliación
  • Maimaris M; Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
  • Pettipher AJ; Department of Physics, Imperial College London, London, SW7 2AZ, UK.
  • Azzouzi M; Department of Physics, Imperial College London, London, SW7 2AZ, UK.
  • Walke DJ; Department of Physics, Imperial College London, London, SW7 2AZ, UK.
  • Zheng X; Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin, 14109, Germany.
  • Gorodetsky A; Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
  • Dong Y; Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
  • Tuladhar PS; School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK.
  • Crespo H; Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
  • Nelson J; National Renewable Energy Laboratory, Golden, CO 80401, USA.
  • Tisch JWG; Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
  • Bakulin AA; Department of Physics, Imperial College London, London, SW7 2AZ, UK.
Nat Commun ; 13(1): 4949, 2022 Aug 23.
Article en En | MEDLINE | ID: mdl-35999214
Fundamental mechanisms underlying exciton formation in organic semiconductors are complex and elusive as it occurs on ultrashort sub-100-fs timescales. Some fundamental aspects of this process, such as the evolution of exciton binding energy, have not been resolved in time experimentally. Here, we apply a combination of sub-10-fs Pump-Push-Photocurrent, Pump-Push-Photoluminescence, and Pump-Probe spectroscopies to polyfluorene devices to track the ultrafast formation of excitons. While Pump-Probe is sensitive to the total concentration of excited states, Pump-Push-Photocurrent and Pump-Push-Photoluminescence are sensitive to bound states only, providing access to exciton binding dynamics. We find that excitons created by near-absorption-edge photons are intrinsically bound states, or become such within 10 fs after excitation. Meanwhile, excitons with a modest >0.3 eV excess energy can dissociate spontaneously within 50 fs before acquiring bound character. These conclusions are supported by excited-state molecular dynamics simulations and a global kinetic model which quantitatively reproduce experimental data.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article Pais de publicación: Reino Unido