Your browser doesn't support javascript.
loading
Reduced CircSMOC1 Level Promotes Metabolic Reprogramming via PTBP1 (Polypyrimidine Tract-Binding Protein) and miR-329-3p in Pulmonary Arterial Hypertension Rats.
Lu, Gui-Feng; Geng, Fei; Deng, Li-Ping; Lin, Da-Cen; Huang, Yan-Zhen; Lai, Su-Mei; Lin, Yi-Chen; Gui, Long-Xin; Sham, James S K; Lin, Mo-Jun.
Afiliación
  • Lu GF; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China (G.-F.L., L.-P.D., Y.-Z.H.,
  • Geng F; Department of Physiology and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong province, People's Republic of China (F.G.).
  • Deng LP; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China (G.-F.L., L.-P.D., Y.-Z.H.,
  • Lin DC; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China (D.-C.L.).
  • Huang YZ; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China (G.-F.L., L.-P.D., Y.-Z.H.,
  • Lai SM; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China (G.-F.L., L.-P.D., Y.-Z.H.,
  • Lin YC; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China (G.-F.L., L.-P.D., Y.-Z.H.,
  • Gui LX; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China (G.-F.L., L.-P.D., Y.-Z.H.,
  • Sham JSK; Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA (J.S.K.S.).
  • Lin MJ; Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China (G.-F.L., L.-P.D., Y.-Z.H.,
Hypertension ; 79(11): 2465-2479, 2022 11.
Article en En | MEDLINE | ID: mdl-35997022
BACKGROUND: Pulmonary arterial hypertension maintains rapid cell proliferation and vascular remodeling through metabolic reprogramming. Recent studies suggested that circRNAs play important role in pulmonary vascular remodeling and pulmonary arterial smooth muscle cells proliferation. However, the relationship between circRNA, cell proliferation, and metabolic reprogramming in pulmonary arterial hypertension has not been investigated. METHODS: RNA-seq and qRT-PCR reveal the differential expression profile of circRNA in pulmonary arteries of pulmonary arterial hypertension rat models. Transfection was used to examine the effects of circSMOC1 on pulmonary artery smooth muscle cells, and the roles of circSMOC1 in vivo were investigated by adenoassociated virus. Mass spectrometry, RNA pull-down, RNA immunoprecipitation, and dual-luciferase reporter assay were performed to investigate the signaling pathway of circSMOC1 regulating the metabolic reprogramming. RESULTS: CircSMOC1 was significantly downregulated in pulmonary arteries of pulmonary arterial hypertension rats. CircSMOC1 knockdown promoted proliferation and migration and enhanced aerobic glycolysis of pulmonary artery smooth muscle cells. CircSMOC1 overexpression in vivo alleviates pulmonary vascular remodeling, right ventricular pressure, and right heart hypertrophy. In the nucleus, circSMOC1 directly binds to PTBP1 (polypyrimidine tract-binding protein), competitively inhibits the specific splicing of PKM (pyruvate kinase M) premRNA, resulting in the upregulation of PKM2 (pyruvate kinase M2), the key enzyme of aerobic glycolysis, to enhance glycolysis. In the cytoplasm, circSMOC1 acted as a miR-329-3p sponge, and its reduction in pulmonary arterial hypertension suppressed PDHB (pyruvate dehydrogenase E1 subunit beta) expression, leading to the impairment of mitochondrial oxidative phosphorylation. CONCLUSIONS: circSMOC1 is crucially involved in the metabolic reprogramming of pulmonary artery smooth muscle cells through PTBP1 and miR-329-3p to regulate pulmonary vascular remodeling in pulmonary arterial hypertension.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteína de Unión al Tracto de Polipirimidina / MicroARNs / Hipertensión Arterial Pulmonar / ARN Circular Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Hypertension Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteína de Unión al Tracto de Polipirimidina / MicroARNs / Hipertensión Arterial Pulmonar / ARN Circular Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Hypertension Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos