Effective Evaluation of Medical Images Using Artificial Intelligence Techniques.
Comput Intell Neurosci
; 2022: 8419308, 2022.
Article
en En
| MEDLINE
| ID: mdl-35990128
This work is implemented for the management of patients with epilepsy, and methods based on electroencephalography (EEG) analysis have been proposed for the timely prediction of its occurrence. The proposed system is used for crisis detection and prediction system; it is useful for both patients and medical staff to know their status easily and more accurately. In the treatment of Parkinson's disease, the affected patients with Parkinson's disease can assess the prognostic risk factors, and the symptoms are evaluated to predict rapid progression in the early stages after diagnosis. The presented seizure prediction system introduces deep learning algorithms into EEG score analysis. This proposed work long short-term memory (LSTM) network model is mainly implemented for the identification and classification of qualitative patterns in the EEG of patients. While compared with other techniques like deep learning models such as convolutional neural networks (CNNs) and traditional machine learning algorithms, the proposed LSTM model plays a significant role in predicting impending crises over 4 different qualifying intervals from 10 minutes to 1.5 hours with very few wrong predictions.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Enfermedad de Parkinson
/
Inteligencia Artificial
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
/
Qualitative_research
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Comput Intell Neurosci
Asunto de la revista:
INFORMATICA MEDICA
/
NEUROLOGIA
Año:
2022
Tipo del documento:
Article
País de afiliación:
India
Pais de publicación:
Estados Unidos