Your browser doesn't support javascript.
loading
Ensemble learning and test-time augmentation for the segmentation of mineralized cartilage versus bone in high-resolution microCT images.
Léger, Jean; Leyssens, Lisa; Kerckhofs, Greet; De Vleeschouwer, Christophe.
Afiliación
  • Léger J; ICTEAM, UCLouvain, Louvain-la-Neuve 1348, Belgium. Electronic address: jean.leger@uclouvain.be.
  • Leyssens L; iMMC, UCLouvain, Louvain-la-Neuve 1348, Belgium; Institute of Experimental and Clinical Research, UCLouvain, Louvain-la-Neuve 1348, Belgium.
  • Kerckhofs G; iMMC, UCLouvain, Louvain-la-Neuve 1348, Belgium; Institute of Experimental and Clinical Research, UCLouvain, Louvain-la-Neuve 1348, Belgium; Department of Materials Science and Engineering, KU Leuven, Leuven 3000, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven 3000,
  • De Vleeschouwer C; ICTEAM, UCLouvain, Louvain-la-Neuve 1348, Belgium. Electronic address: christophe.devleeschouwer@uclouvain.be.
Comput Biol Med ; 148: 105932, 2022 09.
Article en En | MEDLINE | ID: mdl-35964469
High-resolution non-destructive 3D microCT imaging allows the visualization and structural characterization of mineralized cartilage and bone. Deriving statistically relevant quantitative structural information about these tissues, however, requires automated segmentation procedures, mainly because manual contouring is user-biased and time-consuming. Despite the increased spatial resolution in microCT 3D volumes, automatic segmentation of mineralized cartilage versus bone remains non-trivial since they have similar grayscale values. Our work investigates how reliable 2D segmentation masks can be predicted automatically based on a (set of) convolutional neural network(s) trained with a limited number of manually annotated samples. To do that, we compared different strategies to select the 2D samples to annotate and considered ensemble learning and test-time augmentation (TTA) to mitigate the limited accuracy and robustness resulting from the small number of annotated training samples. We show that, for a fixed amount of annotated image samples, 2D microCT slices to annotate should preferably be selected in distinct 3D volumes, at regular intervals, rather than being grouped in adjacent slices of a same 3D volume. Two main lessons are drawn regarding the use of ensembles or TTA instead of a single model. First, ensemble learning is shown to improve segmentation accuracy and to reduce the mean and standard deviation of the absolute errors in cartilage characteristics obtained with different initializations of the neural network training process. In contrast, TTA appears to be unable to improve the model's robustness to unlucky initializations. Second, both TTA and ensembling improved the model's confidence in its predictions and segmentation failure detection.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Imagenología Tridimensional Tipo de estudio: Prognostic_studies Idioma: En Revista: Comput Biol Med Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Imagenología Tridimensional Tipo de estudio: Prognostic_studies Idioma: En Revista: Comput Biol Med Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos