Your browser doesn't support javascript.
loading
Catalytic Metasurfaces Empowered by Bound States in the Continuum.
Hu, Haiyang; Weber, Thomas; Bienek, Oliver; Wester, Alwin; Hüttenhofer, Ludwig; Sharp, Ian D; Maier, Stefan A; Tittl, Andreas; Cortés, Emiliano.
Afiliación
  • Hu H; Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539 München, Germany.
  • Weber T; Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539 München, Germany.
  • Bienek O; Walter Schottky Institute and Physics Department, Technical University Munich, Am Coulombwall 4, 85748 Garching, Germany.
  • Wester A; Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539 München, Germany.
  • Hüttenhofer L; Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539 München, Germany.
  • Sharp ID; Walter Schottky Institute and Physics Department, Technical University Munich, Am Coulombwall 4, 85748 Garching, Germany.
  • Maier SA; Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539 München, Germany.
  • Tittl A; School of Physics and Astronomy, Monash University Clayton Campus, Melbourne, Victoria 3800, Australia.
  • Cortés E; The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom.
ACS Nano ; 16(8): 13057-13068, 2022 Aug 23.
Article en En | MEDLINE | ID: mdl-35953078
Photocatalytic platforms based on ultrathin reactive materials facilitate carrier transport and extraction but are typically restricted to a narrow set of materials and spectral operating ranges due to limited absorption and poor energy-tuning possibilities. Metasurfaces, a class of 2D artificial materials based on the electromagnetic design of nanophotonic resonators, allow optical absorption engineering for a wide range of materials. Moreover, tailored resonances in nanostructured materials enable strong absorption enhancement and thus carrier multiplication. Here, we develop an ultrathin catalytic metasurface platform that leverages the combination of loss-engineered substoichiometric titanium oxide (TiO2-x) and the emerging physical concept of optical bound states in the continuum (BICs) to boost photocatalytic activity and provide broad spectral tunability. We demonstrate that our platform reaches the condition of critical light coupling in a TiO2-x BIC metasurface, thus providing a general framework for maximizing light-matter interactions in diverse photocatalytic materials. This approach can avoid the long-standing drawbacks of many naturally occurring semiconductor-based ultrathin films applied in photocatalysis, such as poor spectral tunability and limited absorption manipulation. Our results are broadly applicable to fields beyond photocatalysis, including photovoltaics and photodetectors.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos