Your browser doesn't support javascript.
loading
Nonparametric Bayesian inference for meta-stable conformational dynamics.
Köhs, Lukas; Kukovetz, Kerri; Rauh, Oliver; Koeppl, Heinz.
Afiliación
  • Köhs L; Centre for Synthetic Biology, Rundeturmstraße 12, Technische Universität Darmstadt, 64283 Darmstadt, Germany.
  • Kukovetz K; Department of Biology, Schnittspahnstraße 3, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
  • Rauh O; Department of Biology, Schnittspahnstraße 3, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
  • Koeppl H; Centre for Synthetic Biology, Rundeturmstraße 12, Technische Universität Darmstadt, 64283 Darmstadt, Germany.
Phys Biol ; 19(5)2022 08 30.
Article en En | MEDLINE | ID: mdl-35944548
Analyses of structural dynamics of biomolecules hold great promise to deepen the understanding of and ability to construct complex molecular systems. To this end, both experimental and computational means are available, such as fluorescence quenching experiments or molecular dynamics simulations, respectively. We argue that while seemingly disparate, both fields of study have to deal with the same type of data about the same underlying phenomenon of conformational switching. Two central challenges typically arise in both contexts: (i) the amount of obtained data is large, and (ii) it is often unknown how many distinct molecular states underlie these data. In this study, we build on the established idea of Markov state modeling and propose a generative, Bayesian nonparametric hidden Markov state model that addresses these challenges. Utilizing hierarchical Dirichlet processes, we treat different meta-stable molecule conformations as distinct Markov states, the number of which we then do not have to seta priori. In contrast to existing approaches to both experimental as well as simulation data that are based on the same idea, we leverage a mean-field variational inference approach, enabling scalable inference on large amounts of data. Furthermore, we specify the model also for the important case of angular data, which however proves to be computationally intractable. Addressing this issue, we propose a computationally tractable approximation to the angular model. We demonstrate the method on synthetic ground truth data and apply it to known benchmark problems as well as electrophysiological experimental data from a conformation-switching ion channel to highlight its practical utility.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Biol Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Biol Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido