The effect of a temperature-sensitive prophage on the evolution of virulence in an opportunistic bacterial pathogen.
Mol Ecol
; 31(20): 5402-5418, 2022 10.
Article
en En
| MEDLINE
| ID: mdl-35917247
Viruses are key actors of ecosystems and have major impacts on global biogeochemical cycles. Prophages deserve particular attention as they are ubiquitous in bacterial genomes and can enter a lytic cycle when triggered by environmental conditions. We explored how temperature affects the interactions between prophages and other biological levels using an opportunistic pathogen, the bacterium Serratia marcescens, which harbours several prophages and that had undergone an evolution experiment under several temperature regimes. We found that the release of one of the prophages was temperature-sensitive and malleable to evolutionary changes. We further discovered that the virulence of the bacterium in an insect model also evolved and was positively correlated with phage release rates. We determined through analysis of genetic and epigenetic data that changes in the bacterial outer cell wall structure possibly explain this phenomenon. We hypothezise that the temperature-dependent phage release rate acted as a selection pressure on S. marcescens and that it resulted in modified bacterial virulence in the insect host. Our study system illustrates how viruses can mediate the influence of abiotic environmental changes to other biological levels and thus be involved in ecosystem feedback loops.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Bacteriófagos
/
Profagos
Tipo de estudio:
Diagnostic_studies
Idioma:
En
Revista:
Mol Ecol
Asunto de la revista:
BIOLOGIA MOLECULAR
/
SAUDE AMBIENTAL
Año:
2022
Tipo del documento:
Article
País de afiliación:
Finlandia
Pais de publicación:
Reino Unido