Your browser doesn't support javascript.
loading
Temporally divergent regulatory mechanisms govern neuronal diversification and maturation in the mouse and marmoset neocortex.
Yuan, Wen; Ma, Sai; Brown, Juliana R; Kim, Kwanho; Murek, Vanessa; Trastulla, Lucia; Meissner, Alexander; Lodato, Simona; Shetty, Ashwin S; Levin, Joshua Z; Buenrostro, Jason D; Ziller, Michael J; Arlotta, Paola.
Afiliación
  • Yuan W; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  • Ma S; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  • Brown JR; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Kim K; Department of Biology and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Murek V; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  • Trastulla L; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  • Meissner A; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Lodato S; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  • Shetty AS; Max Planck Institute of Psychiatry, Munich, Germany.
  • Levin JZ; Max Planck Institute of Psychiatry, Munich, Germany.
  • Buenrostro JD; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  • Ziller MJ; Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Arlotta P; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Nat Neurosci ; 25(8): 1049-1058, 2022 08.
Article en En | MEDLINE | ID: mdl-35915179
Mammalian neocortical neurons span one of the most diverse cell type spectra of any tissue. Cortical neurons are born during embryonic development, and their maturation extends into postnatal life. The regulatory strategies underlying progressive neuronal development and maturation remain unclear. Here we present an integrated single-cell epigenomic and transcriptional analysis of individual mouse and marmoset cortical neuron classes, spanning both early postmitotic stages of identity acquisition and later stages of neuronal plasticity and circuit integration. We found that, in both species, the regulatory strategies controlling early and late stages of pan-neuronal development diverge. Early postmitotic neurons use more widely shared and evolutionarily conserved molecular regulatory programs. In contrast, programs active during later neuronal maturation are more brain- and neuron-specific and more evolutionarily divergent. Our work uncovers a temporal shift in regulatory choices during neuronal diversification and maturation in both mice and marmosets, which likely reflects unique evolutionary constraints on distinct events of neuronal development in the neocortex.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neocórtex Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neocórtex Límite: Animals Idioma: En Revista: Nat Neurosci Asunto de la revista: NEUROLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos