Novel PHA Organic Spacer Increases Interlayer Interactions for High Efficiency in 2D Ruddlesden-Popper CsPbI3 Solar Cells.
ACS Appl Mater Interfaces
; 14(31): 35780-35788, 2022 Aug 10.
Article
en En
| MEDLINE
| ID: mdl-35913123
The two-dimensional (2D) Ruddlesden-Popper (RP) CsPbI3 with hydrophobic organic spacers can significantly improve the environmental and phase stability of photovoltaic devices by suppressing ion migration and inducing steric hindrance. However, due to the multiple-quantum-well structure, these spacer cations lead to weak interactions in 2D RP CsPbI3, which seriously affect the carrier transport. Here, a novel N-H-group-rich phenylhydrazine spacer, namely, PHA, was developed for 2D RP CsPbI3 perovskite solar cells (PSCs). A series of characterizations confirm that the 2D perovskites using PHA spacers enhanced the N-H···I hydrogen-bonding interaction between the organic spacer cations and the [PbI6]4- inorganic layer and accelerated the crystallization rate of the perovskite film, which was beneficial to the preparation of high-quality films with preferred vertical orientation, large grain size, and dense morphology. Meanwhile, the trap state density of the as-prepared 2D RP perovskite films is significantly reduced to enable efficient charge carrier transport. As a result, the (PHA)2Cs4Pb5I16 PSCs achieved a performance of 16.23% with good environmental stability. This work provides a simple organic spacer selection scheme to realize interaction optimization in 2D RP CsPbI3 to develop efficient and stable PSCs.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2022
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos