Critical Role of the Acetylene Content and Fe/C Ratio on the Thickness and Density of Vertically Aligned Carbon Nanotubes Grown at Low Temperature by a One-Step Catalytic Chemical Vapor Deposition Process.
Nanomaterials (Basel)
; 12(14)2022 Jul 07.
Article
en En
| MEDLINE
| ID: mdl-35889563
The present work explores the role of the carbon source content and the Fe/C ratio on the synthesis of vertically aligned carbon nanotubes (VACNTs) by one-step aerosol-assisted CCVD operated at a medium temperature (615 °C) on aluminum substrates. The main objective was to overcome the limitations of VACNT growth, constituting a drawback for applications requiring thick VACNTs. By using acetylene as carbon feedstock and ferrocene as a catalyst precursor, we demonstrate that when acetylene content is reduced to 1.5 vol%, it is possible to grow VACNT carpets up to 700 µm thick while maintaining constant VACNT growth for a long duration (up to 160 min). The carbon conversion yield is significantly improved when the acetylene content reaches 1.5 vol%. The Al surface roughness also influences VACNT growth. An optimum Fe/C ratio of 0.8 wt.% coupled with a low acetylene content gives the highest growth rate (5.4 µm/min) ever reported for a thermal aerosol-assisted CCVD process operated at such a low temperature. The CNT number density can be controlled by varying the Fe/C ratio, enabling high density growth (e.g., 1.3 × 1011 CNT/cm2).
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nanomaterials (Basel)
Año:
2022
Tipo del documento:
Article
País de afiliación:
Francia
Pais de publicación:
Suiza