Professionalism and clinical short answer question marking with machine learning.
Intern Med J
; 52(7): 1268-1271, 2022 07.
Article
en En
| MEDLINE
| ID: mdl-35879236
Machine learning may assist in medical student evaluation. This study involved scoring short answer questions administered at three centres. Bidirectional encoder representations from transformers were particularly effective for professionalism question scoring (accuracy ranging from 41.6% to 92.5%). In the scoring of 3-mark professionalism questions, as compared with clinical questions, machine learning had a lower classification accuracy (P < 0.05). The role of machine learning in medical professionalism evaluation warrants further investigation.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Estudiantes de Medicina
/
Profesionalismo
Límite:
Humans
Idioma:
En
Revista:
Intern Med J
Asunto de la revista:
MEDICINA INTERNA
Año:
2022
Tipo del documento:
Article
País de afiliación:
Australia
Pais de publicación:
Australia