Rhenium(I)-Based Heteroleptic Pentagonal Toroid-Shaped Metallocavitands: Self-Assembly and Molecular Recognition Studies.
Inorg Chem
; 61(29): 11497-11508, 2022 Jul 25.
Article
en En
| MEDLINE
| ID: mdl-35820114
A family of neutral, heteroleptic, dinuclear M2LL'-type pentagonal toroid-shaped metallomacrocycles (1-8) were synthesized using flexible ditopic N donors (Ln = L1-L2), rigid bis-chelating ligands (H2-L' = H2-E), and Re2(CO)10 in a one-pot solvothermal self-assembly approach. The ligands and the metallomacrocycles were characterized using ATR-IR, electrospray ionization mass spectrometry, nuclear magnetic resonance, ultraviolet-visible, and emission spectroscopy methods. The molecular structures of 1, 2, 4, 6, and 7 were confirmed by an X-ray diffraction study and are similar to those of calix[5]arene. The cyclic inner cavities of the metallomacrocycles accommodate toluene/mesitylene/acetone/chlorobenzene as guest molecules that are stabilized by cumulative C-H···π and π···π interactions with the cyclic framework of metallomacrocycle. The photophysical properties of the ligands and the metallomacrocycles were studied. The host-guest recognition properties of metallocavitands 1, 2, 7, and 8 as a model host with phenol and nitrobenzene derivatives as guest molecules were studied by emission spectroscopy methods.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Inorg Chem
Año:
2022
Tipo del documento:
Article
País de afiliación:
India
Pais de publicación:
Estados Unidos