Your browser doesn't support javascript.
loading
Human Remains Identification Using Micro-CT, Chemometric and AI Methods in Forensic Experimental Reconstruction of Dental Patterns after Concentrated Sulphuric Acid Significant Impact.
Thurzo, Andrej; Jancovicová, Viera; Hain, Miroslav; Thurzo, Milan; Novák, Bohuslav; Kosnácová, Helena; Lehotská, Viera; Varga, Ivan; Kovác, Peter; Moravanský, Norbert.
Afiliación
  • Thurzo A; Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia.
  • Jancovicová V; Institute of Forensic Medical Expertise, Expert institute, Bozeny Nemcovej 8, 81104 Bratislava, Slovakia.
  • Hain M; Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81272 Bratislava, Slovakia.
  • Thurzo M; Department of Graphic Arts Technology and Applied Photochemistry, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia.
  • Novák B; Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská Cesta 9, 84104 Bratislava, Slovakia.
  • Kosnácová H; Department of Anthropology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia.
  • Lehotská V; Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia.
  • Varga I; Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 81272 Bratislava, Slovakia.
  • Kovác P; Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia.
  • Moravanský N; 2nd Department of Radiology, Faculty of Medicine, Comenius University in Bratislava, Heydukova 10, 81250 Bratislava, Slovakia.
Molecules ; 27(13)2022 Jun 23.
Article en En | MEDLINE | ID: mdl-35807281
(1) Teeth, in humans, represent the most resilient tissues. However, exposure to concentrated acids might lead to their dissolving, thus making human identification difficult. Teeth often contain dental restorations from materials that are even more resilient to acid impact. This paper aims to introduce a novel method for the 3D reconstruction of dental patterns as a crucial step for the digital identification of dental records. (2) With a combination of modern methods, including micro-computed tomography, cone-beam computer tomography, and attenuated total reflection, in conjunction with Fourier transform infrared spectroscopy and artificial intelligence convolutional neural network algorithms, this paper presents a method for 3D-dental-pattern reconstruction, and human remains identification. Our research studies the morphology of teeth, bone, and dental materials (amalgam, composite, glass-ionomer cement) under different periods of exposure to 75% sulfuric acid. (3) Our results reveal a significant volume loss in bone, enamel, dentine, as well as glass-ionomer cement. The results also reveal a significant resistance by the composite and amalgam dental materials to the impact of sulfuric acid, thus serving as strong parts in the dental-pattern mosaic. This paper also probably introduces the first successful artificial intelligence application in automated-forensic-CBCT segmentation. (4) Interdisciplinary cooperation, utilizing the mentioned technologies, can solve the problem of human remains identification with a 3D reconstruction of dental patterns and their 2D projections over existing ante-mortem records.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Restos Mortales Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Eslovaquia Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Restos Mortales Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Eslovaquia Pais de publicación: Suiza