Your browser doesn't support javascript.
loading
Genetic disruption of Arabidopsis secondary metabolite synthesis leads to microbiome-mediated modulation of nematode invasion.
Sikder, Md Maniruzzaman; Vestergård, Mette; Kyndt, Tina; Topalovic, Olivera; Kudjordjie, Enoch Narh; Nicolaisen, Mogens.
Afiliación
  • Sikder MM; Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
  • Vestergård M; Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, 1342 Savar, Dhaka, Bangladesh.
  • Kyndt T; Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
  • Topalovic O; Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000, Gent, Belgium.
  • Kudjordjie EN; Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
  • Nicolaisen M; Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
ISME J ; 16(9): 2230-2241, 2022 09.
Article en En | MEDLINE | ID: mdl-35760884
In-depth understanding of metabolite-mediated plant-nematode interactions can guide us towards novel nematode management strategies. To improve our understanding of the effects of secondary metabolites on soil nematode communities, we grew Arabidopsis thaliana genetically altered in glucosinolate, camalexin, or flavonoid synthesis pathways, and analyzed their root-associated nematode communities using metabarcoding. To test for any modulating effects of the associated microbiota on the nematode responses, we characterized the bacterial and fungal communities. Finally, as a proxy of microbiome-modulating effects on nematode invasion, we isolated the root-associated microbiomes from the mutants and tested their effect on the ability of the plant parasitic nematode Meloidogyne incognita to penetrate tomato roots. Most mutants had altered relative abundances of several nematode taxa with stronger effects on the plant parasitic Meloidogyne hapla than on other root feeding taxa. This probably reflects that M. hapla invades and remains embedded within root tissues and is thus intimately associated with the host. When transferred to tomato, microbiomes from the flavonoid over-producing pap1-D enhanced M. incognita root-invasion, whereas microbiomes from flavonoid-deficient mutants reduced invasion. This suggests microbiome-mediated effect of flavonoids on Meloidogyne infectivity plausibly mediated by the alteration of the abundances of specific microbial taxa in the transferred microbiomes, although we could not conclusively pinpoint such causative microbial taxa.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tylenchoidea / Arabidopsis / Solanum lycopersicum / Microbiota Límite: Animals Idioma: En Revista: ISME J Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article País de afiliación: Dinamarca Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tylenchoidea / Arabidopsis / Solanum lycopersicum / Microbiota Límite: Animals Idioma: En Revista: ISME J Asunto de la revista: MICROBIOLOGIA / SAUDE AMBIENTAL Año: 2022 Tipo del documento: Article País de afiliación: Dinamarca Pais de publicación: Reino Unido