Your browser doesn't support javascript.
loading
Protocol for live cell image segmentation to profile cellular morphodynamics using MARS-Net.
Jang, Junbong; Hallinan, Caleb; Lee, Kwonmoo.
Afiliación
  • Jang J; Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA. Electronic address: junbongjang@kaist.ac.kr.
  • Hallinan C; Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA.
  • Lee K; Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA. Electronic address: kwonmoo.lee@childrens.harvard.edu.
STAR Protoc ; 3(3): 101469, 2022 09 16.
Article en En | MEDLINE | ID: mdl-35733606
Quantitative studies of cellular morphodynamics rely on accurate cell segmentation in live cell images. However, fluorescence and phase contrast imaging hinder accurate edge localization. To address this challenge, we developed MARS-Net, a deep learning model integrating ImageNet-pretrained VGG19 encoder and U-Net decoder trained on the datasets from multiple types of microscopy images. Here, we provide the protocol for installing MARS-Net, labeling images, training MARS-Net for edge localization, evaluating the trained models' performance, and performing the quantitative profiling of cellular morphodynamics. For complete details on the use and execution of this protocol, please refer to Jang et al. (2021).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Redes Neurales de la Computación Idioma: En Revista: STAR Protoc Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Redes Neurales de la Computación Idioma: En Revista: STAR Protoc Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos