Your browser doesn't support javascript.
loading
Photon-free (s)CMOS camera characterization for artifact reduction in high- and super-resolution microscopy.
Diekmann, Robin; Deschamps, Joran; Li, Yiming; Deguchi, Takahiro; Tschanz, Aline; Kahnwald, Maurice; Matti, Ulf; Ries, Jonas.
Afiliación
  • Diekmann R; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
  • Deschamps J; LaVision Biotec GmbH, Bielefeld, Germany.
  • Li Y; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
  • Deguchi T; Fondazione Human Technopole, Milan, Italy.
  • Tschanz A; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
  • Kahnwald M; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
  • Matti U; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
  • Ries J; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
Nat Commun ; 13(1): 3362, 2022 06 11.
Article en En | MEDLINE | ID: mdl-35690614
Modern implementations of widefield fluorescence microscopy often rely on sCMOS cameras, but this camera architecture inherently features pixel-to-pixel variations. Such variations lead to image artifacts and render quantitative image interpretation difficult. Although a variety of algorithmic corrections exists, they require a thorough characterization of the camera, which typically is not easy to access or perform. Here, we developed a fully automated pipeline for camera characterization based solely on thermally generated signal, and implemented it in the popular open-source software Micro-Manager and ImageJ/Fiji. Besides supplying the conventional camera maps of noise, offset and gain, our pipeline also gives access to dark current and thermal noise as functions of the exposure time. This allowed us to avoid structural bias in single-molecule localization microscopy (SMLM), which without correction is substantial even for scientific-grade, cooled cameras. In addition, our approach enables high-quality 3D super-resolution as well as live-cell time-lapse microscopy with cheap, industry-grade cameras. As our approach for camera characterization does not require any user interventions or additional hardware implementations, numerous correction algorithms that rely on camera characterization become easily applicable.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Artefactos Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Artefactos Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido