Your browser doesn't support javascript.
loading
Topology Optimized Prelithiated SiO Anode Materials for Lithium-Ion Batteries.
Chung, Dong Jae; Youn, Donghan; Kim, Ji Young; Jeong, Won Joon; Kim, Soohwan; Ma, Donghyeok; Lee, Tae Rim; Kim, Seung Tae; Kim, Hansu.
Afiliación
  • Chung DJ; Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
  • Youn D; Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
  • Kim JY; Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
  • Jeong WJ; Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
  • Kim S; Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
  • Ma D; Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
  • Lee TR; Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
  • Kim ST; Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
  • Kim H; Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
Small ; 18(27): e2202209, 2022 Jul.
Article en En | MEDLINE | ID: mdl-35686333
Silicon monoxide (SiO)-based materials have great potential as high-capacity anode materials for lithium-ion batteries. However, they suffer from a low initial coulombic efficiency (ICE) and poor cycle stability, which prevent their successful implementation into commercial lithium-ion batteries. Despite considerable efforts in recent decades, their low ICE and poor cycle stability cannot be resolved at the same time. Here, it is demonstrated that the topological optimization of the prelithiated SiO materials is highly effective in improving both ICE and capacity retention. Laser-assisted atom probe tomography combined with thermogravimetry and differential scanning calorimetry reveals that two exothermic reactions related to microstructural evolution are key in optimizing the domain size of the Si active phase and Li2 SiO3 buffer phase, and their topological arrangements in prelithiated SiO materials. The optimized prelithiated SiO, heat-treated at 650 °C, shows higher capacity retention of 73.4% and lower thickness changes of 68% after 300 cycles than those treated at other temperatures, with high ICE of ≈90% and reversible capacity of 1164 mAh g-1 . Such excellent electrochemical properties of the prelithiated SiO electrode originate from its optimized topological arrangement of active Si phase and Li2 SiO3 inactive buffer phase.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article Pais de publicación: Alemania