Your browser doesn't support javascript.
loading
Anion-specific structure and stability of guanidinium-bound DNA origami.
Hanke, Marcel; Dornbusch, Daniel; Hadlich, Christoph; Rossberg, Andre; Hansen, Niklas; Grundmeier, Guido; Tsushima, Satoru; Keller, Adrian; Fahmy, Karim.
Afiliación
  • Hanke M; Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, Paderborn 33098, Germany.
  • Dornbusch D; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, Dresden 01328, Germany.
  • Hadlich C; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany.
  • Rossberg A; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, Dresden 01328, Germany.
  • Hansen N; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany.
  • Grundmeier G; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, Dresden 01328, Germany.
  • Tsushima S; Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, Paderborn 33098, Germany.
  • Keller A; Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, Paderborn 33098, Germany.
  • Fahmy K; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, Dresden 01328, Germany.
Comput Struct Biotechnol J ; 20: 2611-2623, 2022.
Article en En | MEDLINE | ID: mdl-35685373
While the folding of DNA into rationally designed DNA origami nanostructures has been studied extensively with the aim of increasing structural diversity and introducing functionality, the fundamental physical and chemical properties of these nanostructures remain largely elusive. Here, we investigate the correlation between atomistic, molecular, nanoscopic, and thermodynamic properties of DNA origami triangles. Using guanidinium (Gdm) as a DNA-stabilizing but potentially also denaturing cation, we explore the dependence of DNA origami stability on the identity of the accompanying anions. The statistical analyses of atomic force microscopy (AFM) images and circular dichroism (CD) spectra reveals that sulfate and chloride exert stabilizing and destabilizing effects, respectively, already below the global melting temperature of the DNA origami triangles. We identify structural transitions during thermal denaturation and show that heat capacity changes ΔC p determine the temperature sensitivity of structural damage. The different hydration shells of the anions and their potential to form Gdm+ ion pairs in concentrated salt solutions modulate ΔC p by altered wetting properties of hydrophobic DNA surface regions as shown by molecular dynamics simulations. The underlying structural changes on the molecular scale become amplified by the large number of structurally coupled DNA segments and thereby find nanoscopic correlations in AFM images.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Comput Struct Biotechnol J Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Comput Struct Biotechnol J Año: 2022 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Países Bajos