Your browser doesn't support javascript.
loading
Predicting compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement using boosting machine learning algorithms.
Rathakrishnan, Vimal; Bt Beddu, Salmia; Ahmed, Ali Najah.
Afiliación
  • Rathakrishnan V; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia. SC22732@student.uniten.edu.my.
  • Bt Beddu S; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia.
  • Ahmed AN; Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia.
Sci Rep ; 12(1): 9539, 2022 Jun 09.
Article en En | MEDLINE | ID: mdl-35680937
Predicting the compressive strength of concrete is a complicated process due to the heterogeneous mixture of concrete and high variable materials. Researchers have predicted the compressive strength of concrete for various mixes using machine learning and deep learning models. In this research, compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement is predicted using boosting machine learning (BML) algorithms, namely, Light Gradient Boosting Machine, CatBoost Regressor, Gradient Boosting Regressor (GBR), Adaboost Regressor, and Extreme Gradient Boosting. In these studies, the BML model's performance is evaluated based on prediction accuracy and prediction error rates, i.e., R2, MSE, RMSE, MAE, RMSLE, and MAPE. Additionally, the BML models were further optimised with Random Search algorithms and compared to BML models with default hyperparameters. Comparing all 5 BML models, the GBR model shows the highest prediction accuracy with R2 of 0.96 and lowest model error with MAE and RMSE of 2.73 and 3.40, respectively for test dataset. In conclusion, the GBR model are the best performing BML for predicting the compressive strength of concrete with the highest prediction accuracy, and lowest modelling error.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Malasia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Rep Año: 2022 Tipo del documento: Article País de afiliación: Malasia Pais de publicación: Reino Unido