Your browser doesn't support javascript.
loading
Design and proof-of-concept evaluation of a touchless connector system for preventing peritoneal dialysis-associated peritonitis.
Yekinni, Ibrahim O; Viker, Tom; Hunter, Ryan; Tucker, Aaron; Elfering, Sarah; Rheault, Michelle N; Erdman, Arthur.
Afiliación
  • Yekinni IO; Bakken Medical Devices Center, University of Minnesota, Minnesota, USA.
  • Viker T; Cerovations LLC, Minnesota, USA.
  • Hunter R; Department of Microbiology and Immunology, University of Minnesota Medical School, Minnesota, USA.
  • Tucker A; Bakken Medical Devices Center, University of Minnesota, Minnesota, USA.
  • Elfering S; Department of Medicine, University of Minnesota Medical School, Minnesota, USA.
  • Rheault MN; Department of Pediatrics, University of Minnesota Medical School, Minnesota, USA.
  • Erdman A; Bakken Medical Devices Center, University of Minnesota, Minnesota, USA.
BMJ Innov ; 8(2): 98-104, 2022 Apr.
Article en En | MEDLINE | ID: mdl-35677314
Introduction: In this paper, we describe the design of a touchless peritoneal dialysis connector system and how we evaluated its potential for preventing peritoneal dialysis-associated peritonitis, in comparison to the standard of care. The unique feature of this system is an enclosure within which patients can connect and disconnect for therapy, protecting their peritoneal catheters from touch or aerosols. Methods: We simulated a worst-case contamination scenario by spraying 40mL of a standardized inoculum [ 1×107 colony-forming units (CFU) per milliliter] of test organisms, Staphylococcus epidermidis ATCC1228 and Pseudomonas aeruginosa ATCC39327, while test participants made mock connections for therapy. We then compared the incidence of fluid path contamination by test organisms in the touchless connector system and the standard of care. 4 participants were recruited to perform a total of 56 tests, divided in a 1:1 ratio between both systems. Peritoneal dialysis fluid sample from each test was collected and maintained at body temperature (37° C) for 16 hours before being plated on Luria Bertani agar, Mannitol Salts Agar and Pseudomonas isolation agar for enumeration. Results: No contamination was observed in test samples from the touchless connector system, compared to 65%, 75% and 70% incidence contamination for the standard of care on Luria Bertani agar, Mannitol Salts Agar and Pseudomonas isolation agar respectively. Conclusion: Results show that the touchless connector system can prevent fluid path contamination even in heavy bacterial exposures and may help reduce peritoneal dialysis-associated peritonitis risks from inadvertent contamination with further development.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: BMJ Innov Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: BMJ Innov Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido