Your browser doesn't support javascript.
loading
Actinium coordination chemistry: A density functional theory study with monodentate and bidentate ligands.
Tomecek, Josef; Li, Cen; Schreckenbach, Georg.
Afiliación
  • Tomecek J; Department of Chemistry, Imperial College London, London, UK.
  • Li C; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.
  • Schreckenbach G; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.
J Comput Chem ; 44(3): 334-345, 2023 Jan 30.
Article en En | MEDLINE | ID: mdl-35668552
In the current study, the coordination chemistry of nine-coordinate Ac(III) complexes with 35 monodentate and bidentate ligands was investigated using density functional theory (DFT) in terms of their geometries, charges, reaction energies, and bonding interactions. The energy decomposition analysis with naturals orbitals for chemical valence (EDA-NOCV) and the quantum theory of atoms in molecules (QTAIM) were employed as analysis methods. Trivalent Ac exhibits the highest affinities toward hard acids (such as charged oxophilic donors, fluoride), so its classification as a hard acid is justified. Natural population analysis quantified the involvement of 5f orbitals on Ac to be about 30% of total valence electron natural configuration indicating that Ac is a member of the actinide series. Pearson correlation coefficients were used to study the pairwise correlations among the bond lengths, ΔG reaction energies, charges on Ac and donor atoms, and data from EDA-NOCV and QTAIM. Strong correlations and anticorrelations were found between Voronoi charges on donor atoms with ΔG, EDA-NOCV interaction energies and QTAIM bond critical point densities.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Comput Chem Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Comput Chem Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos