Your browser doesn't support javascript.
loading
Sensory Evidence Accumulation Using Optic Flow in a Naturalistic Navigation Task.
Alefantis, Panos; Lakshminarasimhan, Kaushik; Avila, Eric; Noel, Jean-Paul; Pitkow, Xaq; Angelaki, Dora E.
Afiliación
  • Alefantis P; Center for Neural Science, New York University, New York, New York 10003 pa77@nyu.edu.
  • Lakshminarasimhan K; Center for Theoretical Neuroscience, Columbia University, New York, New York 10027.
  • Avila E; Center for Neural Science, New York University, New York, New York 10003.
  • Noel JP; Center for Neural Science, New York University, New York, New York 10003.
  • Pitkow X; Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030.
  • Angelaki DE; Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005-1892.
J Neurosci ; 42(27): 5451-5462, 2022 07 06.
Article en En | MEDLINE | ID: mdl-35641186
Sensory evidence accumulation is considered a hallmark of decision-making in noisy environments. Integration of sensory inputs has been traditionally studied using passive stimuli, segregating perception from action. Lessons learned from this approach, however, may not generalize to ethological behaviors like navigation, where there is an active interplay between perception and action. We designed a sensory-based sequential decision task in virtual reality in which humans and monkeys navigated to a memorized location by integrating optic flow generated by their own joystick movements. A major challenge in such closed-loop tasks is that subjects' actions will determine future sensory input, causing ambiguity about whether they rely on sensory input rather than expectations based solely on a learned model of the dynamics. To test whether subjects integrated optic flow over time, we used three independent experimental manipulations, unpredictable optic flow perturbations, which pushed subjects off their trajectory; gain manipulation of the joystick controller, which changed the consequences of actions; and manipulation of the optic flow density, which changed the information borne by sensory evidence. Our results suggest that both macaques (male) and humans (female/male) relied heavily on optic flow, thereby demonstrating a critical role for sensory evidence accumulation during naturalistic action-perception closed-loop tasks.SIGNIFICANCE STATEMENT The temporal integration of evidence is a fundamental component of mammalian intelligence. Yet, it has traditionally been studied using experimental paradigms that fail to capture the closed-loop interaction between actions and sensations inherent in real-world continuous behaviors. These conventional paradigms use binary decision tasks and passive stimuli with statistics that remain stationary over time. Instead, we developed a naturalistic visuomotor visual navigation paradigm that mimics the causal structure of real-world sensorimotor interactions and probed the extent to which participants integrate sensory evidence by adding task manipulations that reveal complementary aspects of the computation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Flujo Optico Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans / Male Idioma: En Revista: J Neurosci Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Flujo Optico Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans / Male Idioma: En Revista: J Neurosci Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos