Your browser doesn't support javascript.
loading
Biomechanical design of a new percutaneous locked plate for comminuted proximal tibia fractures.
Djuricic, Aleksandar; Gee, Aaron; Schemitsch, Emil H; Quenneville, Cheryl E; Zdero, Radovan.
Afiliación
  • Djuricic A; Department of Mechanical Engineering, McMaster University, Hamilton, Canada. Electronic address: djuricia@mcmaster.ca.
  • Gee A; Orthopaedic Biomechanics Lab, Victoria Hospital, London, Canada.
  • Schemitsch EH; Orthopaedic Biomechanics Lab, Victoria Hospital, London, Canada; Division of Orthopaedic Surgery, Western University, London, Canada.
  • Quenneville CE; Department of Mechanical Engineering, McMaster University, Hamilton, Canada; School of Biomedical Engineering, McMaster University, Hamilton, Canada.
  • Zdero R; Orthopaedic Biomechanics Lab, Victoria Hospital, London, Canada; Division of Orthopaedic Surgery, Western University, London, Canada; Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Canada; Department of Mechanical and Materials Engineering, Western University, Lond
Med Eng Phys ; 104: 103801, 2022 06.
Article en En | MEDLINE | ID: mdl-35641070
Comminuted proximal tibia fractures are an ongoing surgical challenge. This "proof of concept" study is the first step in designing a new percutaneous plate for this injury under toe-touch weight-bearing as prescribed after surgery. Finite element simulations generated design curves for overall stiffness, bone and implant stress, and interfragmentary motion using 3 fixations (no, 1, or 2 "kickstand" (KS) screws across the fracture gap) over a range of plate elastic moduli (EP = 5 to 200 GPa). Combining well-established optimization criteria to enhance callus formation (i.e. 0.2 mm ≤ axial interfragmentary motion ≤ 1 mm; shear / axial interfragmentary motion ratio < 1.6), lessen stress shielding (i.e. bone stress under the proposed plate > bone stress under a traditional titanium or steel plate), and reduce steel screw breakage (i.e. screw max stress < ultimate tensile stress of steel) resulted in plate design recommendations: 172.6 ≤ EP < 200 GPa (no KS screw), 79.8 ≤ EP < 100 GPa (1 KS screw), and 4.9 ≤ EP < 100 GPa (2 KS screws). A prototype plate could be made from materials currently used or proposed for orthopaedics, such as polymers, fiber-reinforced polymers, fiber metal laminates, metal foams, or shape memory alloys.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tibia / Fracturas Óseas Límite: Humans Idioma: En Revista: Med Eng Phys Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tibia / Fracturas Óseas Límite: Humans Idioma: En Revista: Med Eng Phys Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article Pais de publicación: Reino Unido