Your browser doesn't support javascript.
loading
The multicomponent synergistic effect of a hierarchical Li0.485La0.505TiO3 solid-state electrolyte for dendrite-free lithium-metal batteries.
Chen, Huanhui; Yu, Liang; Cao, Xing; Yang, Qixin; Liu, Ya; Wei, Yanru; Zeng, Junrong; Zhong, Liubiao; Qiu, Yejun.
Afiliación
  • Chen H; Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China. yejunqiu@hit.edu.cn.
  • Yu L; Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China. yejunqiu@hit.edu.cn.
  • Cao X; Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China. yejunqiu@hit.edu.cn.
  • Yang Q; Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China. yejunqiu@hit.edu.cn.
  • Liu Y; Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China. yejunqiu@hit.edu.cn.
  • Wei Y; Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China. yejunqiu@hit.edu.cn.
  • Zeng J; Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China. yejunqiu@hit.edu.cn.
  • Zhong L; Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China. yejunqiu@hit.edu.cn.
  • Qiu Y; Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China. yejunqiu@hit.edu.cn.
Nanoscale ; 14(21): 7768-7777, 2022 Jun 01.
Article en En | MEDLINE | ID: mdl-35603980
Development of a composite electrolyte with high ionic conductivity, excellent electrochemical stability and preeminent mechanical strength is beneficial for suppressing Li-dendrite penetration and unstable interfacial reactions in solid-state Li-metal batteries. Herein, a novel composite electrolyte material comprising perovskite Li0.485La0.505TiO3 (LLTO), poly(ethylene oxide) (PEO), and a barium titanate (BTO)-polyimide (PI) composite matrix has been successfully fabricated. Benefiting from the well-defined ion channels, the resulting BTO-PI@LLTO-PEO-FEC-LiTFSI (BP@LPFL) exhibits excellent cycling stability, low interfacial resistance, enhanced mechanical strength, and high ionic conductivity. Particularly, BP@LPFL possesses an excellent ionic conductivity of 3.0 × 10-4 S cm-1 at room temperature and achieves a wide electrochemical window of 5.2 V (vs. Li+/Li). For Li-LiFePO4 batteries, such an ingenious structure yields a discharge capacity of 124 mA h g-1 at 0.1 C after 200 cycles at room temperature and delivers a discharge capacity of 165 mA h g-1 at 0.1 C after 110 cycles at 60 °C. Additionally, the symmetric Li cell remains stable after 700 h at a current density of 0.5 mA cm-2. Furthermore, ex situ X-ray photoelectron spectroscopy and ex situ scanning electron microscopy were used to verify the interface evolution. Besides, a flexible full battery is fabricated, which exhibits impressive performance. These properties presented here provide support for BP@LPFL as a feasible candidate electrolyte for solid-state lithium batteries.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido