Your browser doesn't support javascript.
loading
Improving Emergency Medical Services Information Exchange: Methods for Automating Entity Resolution.
Turer, Robert W; Smith, Graham C; Mehkri Do, Faroukh; Chou, Andrew; Fowler, Ray; Idris, Ahamed H; Lehmann, Christoph U; McDonald, Samuel A.
Afiliación
  • Turer RW; University of Texas Southwestern Medical Center, Department of Emergency Medicine. Dallas, TX, USA.
  • Smith GC; University of Texas Southwestern Medical Center, Clinical Informatics Center. Dallas, TX, USA.
  • Mehkri Do F; University of Michigan Medical School, Department of Emergency Medicine. Ann Arbor, MI, USA.
  • Chou A; University of Texas Southwestern Medical Center, Department of Emergency Medicine. Dallas, TX, USA.
  • Fowler R; University of Texas Southwestern Medical Center, Department of Emergency Medicine. Dallas, TX, USA.
  • Idris AH; University of Texas Southwestern Medical Center, Department of Emergency Medicine. Dallas, TX, USA.
  • Lehmann CU; University of Texas Southwestern Medical Center, Department of Emergency Medicine. Dallas, TX, USA.
  • McDonald SA; University of Texas Southwestern Medical Center, Clinical Informatics Center. Dallas, TX, USA.
Stud Health Technol Inform ; 291: 17-26, 2022 May 20.
Article en En | MEDLINE | ID: mdl-35593755
The 21st century has seen an enormous growth in emergency medical services (EMS) information technology systems, with corresponding accumulation of large volumes of data. Despite this growth, integration efforts between EMS-based systems and electronic health records, and public-sector databases have been limited due to inconsistent data structure, data missingness, and policy and regulatory obstacles. Efforts to integrate EMS systems have benefited from the evolving science of entity resolution and record linkage. In this chapter, we present the history and fundamentals of record linkage techniques, an overview of past uses of this technology in EMS, and a look into the future of record linkage techniques for integrating EMS data systems including the use of machine learning-based techniques.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Servicios Médicos de Urgencia / Intercambio de Información en Salud Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Servicios Médicos de Urgencia / Intercambio de Información en Salud Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos