Your browser doesn't support javascript.
loading
Translating from Proteins to Ribonucleic Acids for Ligand-binding Site Detection.
Möller, Lukas; Guerci, Lorenzo; Isert, Clemens; Atz, Kenneth; Schneider, Gisbert.
Afiliación
  • Möller L; Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
  • Guerci L; Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
  • Isert C; Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
  • Atz K; Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
  • Schneider G; Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
Mol Inform ; 41(10): e2200059, 2022 10.
Article en En | MEDLINE | ID: mdl-35577762
Identifying druggable ligand-binding sites on the surface of the macromolecular targets is an important process in structure-based drug discovery. Deep-learning models have been shown to successfully predict ligand-binding sites of proteins. As a step toward predicting binding sites in RNA and RNA-protein complexes, we employ three-dimensional convolutional neural networks. We introduce a dataset splitting approach to minimize structure-related bias in training data, and investigate the influence of protein-based neural network pre-training before fine-tuning on RNA structures. Models that were pre-trained on proteins considerably outperformed the models that were trained exclusively on RNA structures. Overall, 71 % of the known RNA binding sites were correctly located within 4 Šof their true centres.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Redes Neurales de la Computación Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Mol Inform Año: 2022 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Redes Neurales de la Computación Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Mol Inform Año: 2022 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Alemania