Your browser doesn't support javascript.
loading
Outcome Analysis in Elective Electrical Cardioversion of Atrial Fibrillation Patients: Development and Validation of a Machine Learning Prognostic Model.
Nuñez-Garcia, Jean C; Sánchez-Puente, Antonio; Sampedro-Gómez, Jesús; Vicente-Palacios, Victor; Jiménez-Navarro, Manuel; Oterino-Manzanas, Armando; Jiménez-Candil, Javier; Dorado-Diaz, P Ignacio; Sánchez, Pedro L.
Afiliación
  • Nuñez-Garcia JC; Department of Cardiology, Hospital Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain.
  • Sánchez-Puente A; Department of Cardiology, Hospital Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain.
  • Sampedro-Gómez J; CIBERCV (Centro de Investigacion Biomedica en Red Enfermedades Cardiovasculares), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
  • Vicente-Palacios V; Department of Cardiology, Hospital Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain.
  • Jiménez-Navarro M; CIBERCV (Centro de Investigacion Biomedica en Red Enfermedades Cardiovasculares), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
  • Oterino-Manzanas A; Department of Cardiology, Hospital Universitario de Salamanca-IBSAL, 37007 Salamanca, Spain.
  • Jiménez-Candil J; Philips Healthcare, 28050 Madrid, Spain.
  • Dorado-Diaz PI; Department of Cardiology, Hospital Virgen de la Victoria-IBIMA, 29010 Malaga, Spain.
  • Sánchez PL; Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain.
J Clin Med ; 11(9)2022 May 07.
Article en En | MEDLINE | ID: mdl-35566761
Background: The integrated approach to electrical cardioversion (EC) in atrial fibrillation (AF) is complex; candidates can resolve spontaneously while waiting for EC, and post-cardioversion recurrence is high. Thus, it is especially interesting to avoid the programming of EC in patients who would restore sinus rhythm (SR) spontaneously or present early recurrence. We have analyzed the whole elective EC of the AF process using machine-learning (ML) in order to enable a more realistic and detailed simulation of the patient flow for decision making purposes. Methods: The dataset consisted of electronic health records (EHRs) from 429 consecutive AF patients referred for EC. For analysis of the patient outcome, we considered five pathways according to restoring and maintaining SR: (i) spontaneous SR restoration, (ii) pharmacologic-cardioversion, (iii) direct-current cardioversion, (iv) 6-month AF recurrence, and (v) 6-month rhythm control. We applied ML classifiers for predicting outcomes at each pathway and compared them with the CHA2DS2-VASc and HATCH scores. Results: With the exception of pathway (iii), all ML models achieved improvements in comparison with CHA2DS2-VASc or HATCH scores (p < 0.01). Compared to the most competitive score, the area under the ROC curve (AUC-ROC) was: 0.80 vs. 0.66 for predicting (i); 0.71 vs. 0.55 for (ii); 0.64 vs. 0.52 for (iv); and 0.66 vs. 0.51 for (v). For a threshold considered optimal, the empirical net reclassification index was: +7.8%, +47.2%, +28.2%, and +34.3% in favor of our ML models for predicting outcomes for pathways (i), (ii), (iv), and (v), respectively. As an example tool of generalizability of ML models, we deployed our algorithms in an open-source calculator, where the model would personalize predictions. Conclusions: An ML model improves the accuracy of restoring and maintaining SR predictions over current discriminators. The proposed approach enables a detailed simulation of the patient flow through personalized predictions.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Clin Med Año: 2022 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Clin Med Año: 2022 Tipo del documento: Article País de afiliación: España Pais de publicación: Suiza