Your browser doesn't support javascript.
loading
N-Acetyl-l-leucine-polyethylenimine-mediated miR-34a delivery improves osteogenesis and bone formation in vitro and in vivo.
Shen, Yuqin; Liu, Yin; Gao, Han; Fei, Hongbo; Yu, Wenwen; Hu, Tianqi; Zheng, Yi; Bi, Xueting; Lin, Chongtao.
Afiliación
  • Shen Y; Department of Periodontics, School and Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 China linct@jlu.edu.cn +86-431-88796039.
  • Liu Y; Department of Periodontics, School and Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 China linct@jlu.edu.cn +86-431-88796039.
  • Gao H; Department of Periodontics, School and Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 China linct@jlu.edu.cn +86-431-88796039.
  • Fei H; Department of Periodontics, School and Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 China linct@jlu.edu.cn +86-431-88796039.
  • Yu W; Department of Orthodontics, School and Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 China.
  • Hu T; Department of Periodontics, School and Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 China linct@jlu.edu.cn +86-431-88796039.
  • Zheng Y; Department of Periodontics, School and Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 China linct@jlu.edu.cn +86-431-88796039.
  • Bi X; Department of Periodontics, School and Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 China linct@jlu.edu.cn +86-431-88796039.
  • Lin C; Department of Periodontics, School and Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 China linct@jlu.edu.cn +86-431-88796039.
RSC Adv ; 8(15): 8080-8088, 2018 Feb 19.
Article en En | MEDLINE | ID: mdl-35542025
Oral bone defects are difficult to treat. Recently, endogenous miR-34a was shown to be involved in bone anabolism. Clinical application of such microRNAs requires the inherent instability of microRNAs to be overcome by an efficient delivery system. In this study, we employed N-acetyl-l-leucine-modified polyethylenimine (N-Ac-l-Leu-PEI) as an miR-34a carrier and evaluated its delivery ability, transfection efficiency, cytotoxicity and whether it enhanced osteogenic differentiation and bone formation in vitro and in vivo. Stable N-Ac-l-Leu-PEI/miR-34a nanocomplexes were synthesized at a mass ratio of 4 and had a small size (190.34 nm), a low zeta potential (21.1 mV), a high transfection efficiency (69.39%) and no cytotoxicity in MG63 cells. N-Ac-l-Leu-PEI-mediated miR-34a delivery in vitro promoted ALP activity and expression of osteogenic differentiation markers, Runx2, SP7 and ColI to higher levels than those produced by Lipofectamine 2000-mediated delivery. N-Ac-l-Leu-PEI also achieved delivery of miR-34a in vivo to a local cranial bone defect area with miR-34a retaining the ability to initiate significant new bone formation 12 weeks post-implantation. This demonstrates the potential for N-Ac-l-Leu-PEI as a gene therapy vehicle for the regeneration of bone defects.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2018 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2018 Tipo del documento: Article Pais de publicación: Reino Unido