Your browser doesn't support javascript.
loading
Integrative Soil Application of Humic Acid and Foliar Plant Growth Stimulants Improves Soil Properties and Wheat Yield and Quality in Nutrient-Poor Sandy Soil of a Semiarid Region.
Tahoun, Ayman M M Abou; El-Enin, Moamen M Abou; Mancy, Ahmed G; Sheta, Mohamed H; Shaaban, Ahmed.
Afiliación
  • Tahoun AMMA; Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11884 Egypt.
  • El-Enin MMA; Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11884 Egypt.
  • Mancy AG; Soils and Water Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11884 Egypt.
  • Sheta MH; Soils and Water Department, Faculty of Agriculture, Al-Azhar University, Cairo, 11884 Egypt.
  • Shaaban A; Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514 Egypt.
J Soil Sci Plant Nutr ; 22(3): 2857-2871, 2022.
Article en En | MEDLINE | ID: mdl-35528198
Sandy soils (containing > 50% sand) are widely distributed worldwide and are characterized by their poor structure, low organic matter, weak hydraulic and nutritional properties, and low crop productivity. Using a 2-year pot experiment, in this study, we investigated the effects of humic acid (HA) as a soil amendment and study two plant growth stimulants (PGSs), zinc oxide nanoparticles (ZnONPs), and L-tryptophan (L-TRP), as a foliar application on wheat grown in nutrient-poor sandy soil. Three HA rates (0 (HA0), 0.2 (HA0.2), and 0.4 (HA0.4) g kg-1 soil) and five PGS levels [control, 50 mg l-1 (ZnONPs50), 100 mg l-1 (ZnONPs100), 0.25 mmol l-1 (L-TRP0.25), and 0.5 mmol l-1 (L-TRP0.5)] were used. The soil hydro-physico-chemical properties, morpho-physiological responses, yield, and quality were measured. HA addition amended the soil structure by allowing rapid macroaggregate formation, decreasing bulk density and pH, and increasing porosity and electrical conductivity, thereby improving soil hydraulic properties. HA0.2 and HA0.4 additions improved growth, yield components, and grain minerals, resulting in higher grain yield by 28.3-54.4%, grain protein by 10.2-13.4%, wet gluten by 18.2-23.3%, and dry gluten by 23.5-29.5%, respectively, than HA0. Foliar application of ZnONPs or L-TRP, especially at higher concentrations compared to the control, noticeably recorded the same positive results as HA treatments. The best results were achieved through the integration of HA0.4 + ZnONPs100 or L-TRP0.5 to the tested nutrient-poor sandy soil. The interactive application of HA0.4 + ZnONPs100 or L-TRP0.5 and the use of mineral fertilizer, which is considered a surplus point in permaculture, can be recommended for sustainable wheat production in nutrient-poor sandy soil.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Soil Sci Plant Nutr Año: 2022 Tipo del documento: Article Pais de publicación: Chile

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Soil Sci Plant Nutr Año: 2022 Tipo del documento: Article Pais de publicación: Chile