Your browser doesn't support javascript.
loading
Comprehensive Analysis of CRISPR-Cas9 Editing Outcomes in Yeast Xanthophyllomyces dendrorhous.
Hong, Jixuan; Meng, Ziyue; Zhang, Zixi; Su, Hang; Fan, Yuxuan; Huang, Ruilin; Ding, Ruirui; Zhang, Ning; Li, Fuli; Wang, Shi'an.
Afiliación
  • Hong J; Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China.
  • Meng Z; Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China.
  • Zhang Z; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China; and Shandong Energy Institute, Qingdao, China.
  • Su H; Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China.
  • Fan Y; Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China.
  • Huang R; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China; and Shandong Energy Institute, Qingdao, China.
  • Ding R; Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China.
  • Zhang N; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China; and Shandong Energy Institute, Qingdao, China.
  • Li F; Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China.
  • Wang S; Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China.
CRISPR J ; 5(4): 558-570, 2022 08.
Article en En | MEDLINE | ID: mdl-35506993
DNA repair after Cas9 cutting can result in deletions/insertions, genomic rearrangements, and rare nucleotide substitutions. However, most work has only focused on deletions/insertions resulting from repair after CRISPR-Cas9 action. Here, we comprehensively analyzed the editing outcomes induced by CRISPR-Cas9 treatment in yeast Xanthophyllomyces dendrorhous by Sanger and Illumina sequencing and identified diverse DNA repair patterns, including DNA deletions, interchromosomal translocations, and on-target nucleotide substitutions (point mutations). Some deletions were observed repeatedly, and others, especially large deletions, varied in size. Genome sequencing and structural variation analysis showed that the interchromosomal translocations happened between Cas9 target sites and the endogenous ADH4 promoter. In contrast to previous studies, analysis revealed that the on-target point mutations were not random. Importantly, these point mutations showed strong sequence dependence that is not consistent with previous work in Hela cells, where CRISPR-mediated substitutions were found to lack sequence dependence and conversion preferences. Finally, we found that the non-homologous end joining components Ku70, Ku80, Mre11, or RAD50, and the overlapping roles of non-essential DNA polymerases were necessary for the production of both point mutations and deletions. This work expands our knowledge of CRISPR-Cas9 mediated DNA repair.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sistemas CRISPR-Cas / Edición Génica Límite: Humans Idioma: En Revista: CRISPR J Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sistemas CRISPR-Cas / Edición Génica Límite: Humans Idioma: En Revista: CRISPR J Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos