Your browser doesn't support javascript.
loading
Effects of polystyrene nanoplastics on endothelium senescence and its underlying mechanism.
Shiwakoti, Saugat; Ko, Ju-Young; Gong, Dalseong; Dhakal, Bikalpa; Lee, Jeong-Hye; Adhikari, Radhika; Gwak, Yeonhyang; Park, Sin-Hee; Jun Choi, Ik; Schini-Kerth, Valérie B; Kang, Ki-Woon; Oak, Min-Ho.
Afiliación
  • Shiwakoti S; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea.
  • Ko JY; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea.
  • Gong D; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea; Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260 INSERM (French National Institute of Health and Medical Research), University of Strasbourg, Strasbourg, France.
  • Dhakal B; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea.
  • Lee JH; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea.
  • Adhikari R; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea.
  • Gwak Y; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea.
  • Park SH; Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
  • Jun Choi I; Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
  • Schini-Kerth VB; Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260 INSERM (French National Institute of Health and Medical Research), University of Strasbourg, Strasbourg, France.
  • Kang KW; Division of Cardiology, Cardiovascular and Arrhythmia Center, Chung-Ang University, Seoul, Republic of Korea.
  • Oak MH; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea. Electronic address: mhoak@mokpo.ac.kr.
Environ Int ; 164: 107248, 2022 06.
Article en En | MEDLINE | ID: mdl-35461096
Global plastic use has increased rapidly, and environmental pollution associated with nanoplastics (NPs) has been a growing concern recently. However, the impact and biological mechanism of NPs on the cardiovascular system are not well characterized. This study aimed to assess the possibility that NPs exposure promotes premature endothelial cell (EC) senescence in porcine coronary artery ECs and, if so, to elucidate the underlying mechanism. Treatment of ECs with NPs promoted the acquisition of senescence markers, senescence-associated ß-galactosidase activity, and p53, p21, and p16 protein expression, resulting in the inhibition of proliferation. In addition, NPs impaired endothelium-dependent vasorelaxation associated with decreased endothelial nitric oxide synthase (eNOS) expression. NPs enhanced reactive oxygen species formation in ECs, and increased oxidative stress levels were associated with the induction of NADPH oxidases expression, followed by the subsequent downregulation of Sirt1 expression. The characteristics of EC senescence and dysfunction caused by NPs are prevented by an antioxidant (N-acetylcysteine), an NADPH oxidase inhibitor (apocynin), and a Sirt1 activator (resveratrol). These findings indicate that NPs induced premature EC senescence, at least in part, through the redox-sensitive eNOS/Sirt1 signaling pathway. This study suggested the effects and underlying mechanism of NPs on the cardiovascular system, which may provide pharmacological targets to prevent NPs-associated cardiovascular diseases.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poliestirenos / Sirtuina 1 Límite: Animals Idioma: En Revista: Environ Int Año: 2022 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poliestirenos / Sirtuina 1 Límite: Animals Idioma: En Revista: Environ Int Año: 2022 Tipo del documento: Article Pais de publicación: Países Bajos