Your browser doesn't support javascript.
loading
Transition Metal Dichalcogenide Dimer Nanoantennas for Tailored Light-Matter Interactions.
Zotev, Panaiot G; Wang, Yue; Sortino, Luca; Severs Millard, Toby; Mullin, Nic; Conteduca, Donato; Shagar, Mostafa; Genco, Armando; Hobbs, Jamie K; Krauss, Thomas F; Tartakovskii, Alexander I.
Afiliación
  • Zotev PG; Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K.
  • Wang Y; Department of Physics, University of York, York YO10 5DD, U.K.
  • Sortino L; Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K.
  • Severs Millard T; Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität, München 80539, Munich, Germany.
  • Mullin N; Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K.
  • Conteduca D; Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K.
  • Shagar M; Department of Physics, University of York, York YO10 5DD, U.K.
  • Genco A; Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K.
  • Hobbs JK; Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K.
  • Krauss TF; Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K.
  • Tartakovskii AI; Department of Physics, University of York, York YO10 5DD, U.K.
ACS Nano ; 16(4): 6493-6505, 2022 Apr 26.
Article en En | MEDLINE | ID: mdl-35385647
Transition metal dichalcogenides have emerged as promising materials for nanophotonic resonators because of their large refractive index, low absorption within a large portion of the visible spectrum, and compatibility with a wide range of substrates. Herein, we use these properties to fabricate WS2 double-pillar nanoantennas in a variety of geometries enabled by the anisotropy in the crystal structure. Using dark-field spectroscopy, we reveal multiple Mie resonances, to which we couple WSe2 monolayer photoluminescence and achieve Purcell enhancement and an increased fluorescence by factors up to 240 for dimer gaps of 150 nm. We introduce postfabrication atomic force microscope repositioning and rotation of dimer nanoantennas, achieving gaps as small as 10 ± 5 nm, which enables a host of potential applications, including strong Purcell enhancement of single-photon emitters and optical trapping, which we study in simulations. Our findings highlight the advantages of using transition metal dichalcogenides for nanophotonics by exploring applications enabled by their properties.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos