Your browser doesn't support javascript.
loading
Generative learning approach for radiation dose reduction in X-ray guided cardiac interventions.
Azizmohammadi, Fariba; Navarro Castellanos, Iñaki; Miró, Joaquim; Segars, Paul; Samei, Ehsan; Duong, Luc.
Afiliación
  • Azizmohammadi F; Interventional Imaging Lab, Department of Software and IT Engineering, École de technologie supérieure, Montreal, Canada.
  • Navarro Castellanos I; Department of Pediatrics, CHU Sainte-Justine, Montreal, Canada.
  • Miró J; Department of Pediatrics, CHU Sainte-Justine, Montreal, Canada.
  • Segars P; Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina, USA.
  • Samei E; Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina, USA.
  • Duong L; Interventional Imaging Lab, Department of Software and IT Engineering, École de technologie supérieure, Montreal, Canada.
Med Phys ; 49(6): 4071-4081, 2022 Jun.
Article en En | MEDLINE | ID: mdl-35383946
BACKGROUND: Navigation guidance in cardiac interventions is provided by X-ray angiography. Cumulative radiation exposure is a serious concern for pediatric cardiac interventions. PURPOSE: A generative learning-based approach is proposed to predict X-ray angiography frames to reduce the radiation exposure for pediatric cardiac interventions while preserving the image quality. METHODS: Frame predictions are based on a model-free motion estimation approach using a long short-term memory architecture and a content predictor using a convolutional neural network structure. The presented model thus estimates contrast-enhanced vascular structures such as the coronary arteries and their motion in X-ray sequences in an end-to-end system. This work was validated with 56 simulated and 52 patients' X-ray angiography sequences. RESULTS: Using the predicted images can reduce the number of pulses by up to three new frames without affecting the image quality. The average required acquisition can drop by 30% per second for a 15 fps acquisition. The average structural similarity index measurement was 97% for the simulated dataset and 82% for the patients' dataset. CONCLUSIONS: Frame prediction using a learning-based method is promising for minimizing radiation dose exposure. The required pulse rate is reduced while preserving the frame rate and the image quality. With proper integration in X-ray angiography systems, this method can pave the way for improved dose management.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reducción Gradual de Medicamentos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Child / Humans Idioma: En Revista: Med Phys Año: 2022 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reducción Gradual de Medicamentos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Child / Humans Idioma: En Revista: Med Phys Año: 2022 Tipo del documento: Article País de afiliación: Canadá Pais de publicación: Estados Unidos