Your browser doesn't support javascript.
loading
Frequency controlled agglomeration of pt-nanoparticles in sonochemical synthesis.
Hansen, Henrik E; Seland, Frode; Sunde, Svein; Burheim, Odne S; Pollet, Bruno G.
Afiliación
  • Hansen HE; Electrochemistry Group, Department of Materials Science and Engineering, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineeri
  • Seland F; Electrochemistry Group, Department of Materials Science and Engineering, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
  • Sunde S; Electrochemistry Group, Department of Materials Science and Engineering, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
  • Burheim OS; Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
  • Pollet BG; Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway; Green H(2) Lab, Pollet Research Group, Hydrogen Research Institute (HRI), Université Du Québec à T
Ultrason Sonochem ; 85: 105991, 2022 Apr.
Article en En | MEDLINE | ID: mdl-35381486
Optimizing the surface area of nanoparticles is key to achieving high catalytic activities for electrochemical energy conversion devices. In this work, the frequency range (200 kHz-500 kHz) for maximum sonochemical radical formation was investigated for the sonochemical synthesis of Pt-nanoparticles to assess whether an optimum frequency exists or if the entire range provides reproducible particle properties. Through physical and electrochemical characterization, it was found that the frequency dependent mechanical effects of ultrasound resulted in smaller, more open agglomerates at lower frequencies with agglomerate sizes of (238 ± 4) nm at 210 kHz compared to (274 ± 2) nm at 326 kHz, and electrochemical surface areas of (12.4 ± 0.9) m2g-1 at 210 kHz compared to (3.4 ± 0.5) m2g-1 at 326 kHz. However, the primary particle size (2.1 nm) and the catalytic activity towards hydrogen evolution, (19 ± 2) mV at 10mA cm2,remained unchanged over the entire frequency range. Highly reproducible Pt-nanoparticles are therefore easily attainable within a broad range of ultrasonic frequencies for the sonochemical synthesis route.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas Idioma: En Revista: Ultrason Sonochem Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2022 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas Idioma: En Revista: Ultrason Sonochem Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2022 Tipo del documento: Article Pais de publicación: Países Bajos