Your browser doesn't support javascript.
loading
Functional Connectivity of the Brain Across Rodents and Humans.
Xu, Nan; LaGrow, Theodore J; Anumba, Nmachi; Lee, Azalea; Zhang, Xiaodi; Yousefi, Behnaz; Bassil, Yasmine; Clavijo, Gloria P; Khalilzad Sharghi, Vahid; Maltbie, Eric; Meyer-Baese, Lisa; Nezafati, Maysam; Pan, Wen-Ju; Keilholz, Shella.
Afiliación
  • Xu N; Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States.
  • LaGrow TJ; Electrical and Computer Engineering, Georgia Tech, Atlanta, GA, United States.
  • Anumba N; Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States.
  • Lee A; Neuroscience Graduate Program, Emory University, Atlanta, GA, United States.
  • Zhang X; Emory University School of Medicine, Atlanta, GA, United States.
  • Yousefi B; Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States.
  • Bassil Y; Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States.
  • Clavijo GP; Neuroscience Graduate Program, Emory University, Atlanta, GA, United States.
  • Khalilzad Sharghi V; Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States.
  • Maltbie E; Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States.
  • Meyer-Baese L; Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States.
  • Nezafati M; Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States.
  • Pan WJ; Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States.
  • Keilholz S; Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States.
Front Neurosci ; 16: 816331, 2022.
Article en En | MEDLINE | ID: mdl-35350561
Resting-state functional magnetic resonance imaging (rs-fMRI), which measures the spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal, is increasingly utilized for the investigation of the brain's physiological and pathological functional activity. Rodents, as a typical animal model in neuroscience, play an important role in the studies that examine the neuronal processes that underpin the spontaneous fluctuations in the BOLD signal and the functional connectivity that results. Translating this knowledge from rodents to humans requires a basic knowledge of the similarities and differences across species in terms of both the BOLD signal fluctuations and the resulting functional connectivity. This review begins by examining similarities and differences in anatomical features, acquisition parameters, and preprocessing techniques, as factors that contribute to functional connectivity. Homologous functional networks are compared across species, and aspects of the BOLD fluctuations such as the topography of the global signal and the relationship between structural and functional connectivity are examined. Time-varying features of functional connectivity, obtained by sliding windowed approaches, quasi-periodic patterns, and coactivation patterns, are compared across species. Applications demonstrating the use of rs-fMRI as a translational tool for cross-species analysis are discussed, with an emphasis on neurological and psychiatric disorders. Finally, open questions are presented to encapsulate the future direction of the field.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Neurosci Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Neurosci Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza