Your browser doesn't support javascript.
loading
Happy or sad? Recognizing emotions with wavelet coefficient energy mean of EEG signals.
Chen, Ruijuan; Sun, Zhihui; Diao, Xiaofei; Wang, Huiquan; Wang, Jinhai; Li, Ting; Wang, Yao.
Afiliación
  • Chen R; School of Life Sciences, Tian Gong University, Xiqing District, Tianjin, China.
  • Sun Z; Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Xiqing District, Tianjin, China.
  • Diao X; School of Life Sciences, Tian Gong University, Xiqing District, Tianjin, China.
  • Wang H; School of Life Sciences, Tian Gong University, Xiqing District, Tianjin, China.
  • Wang J; School of Life Sciences, Tian Gong University, Xiqing District, Tianjin, China.
  • Li T; Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Xiqing District, Tianjin, China.
  • Wang Y; School of Life Sciences, Tian Gong University, Xiqing District, Tianjin, China.
Technol Health Care ; 30(4): 937-949, 2022.
Article en En | MEDLINE | ID: mdl-35342066
BACKGROUND: Emotional intelligence plays a vital role in human-computer interaction, and EEG signals are an objective response to human emotions. OBJECTIVE: We propose a method to extract the energy means of detail coefficients as feature values for emotion recognition helps to improve EEG signal-based emotion recognition accuracy. METHOD: We used movie clips as the eliciting material to stimulate the real emotions of the subjects, preprocessed the collected EEG signals, extracted the feature values, and classified the emotions based on them using Support Vector Machine (SVM) and Stacked Auto-Encoder (SAE). The method was verified based on the SJTU emotion EEG database (SEED) and the self-acquisition experiment. RESULTS: The results show that the accuracy is better using SVM. The results based on the SEED database are 89.06% and 79.90% for positive-negative and positive-neutral-negative, respectively. The results based on the self-acquisition data are 98.05% and 89.83% for the same, with an average recognition rate of 86.57% for the four categories of fear, sad (negative), peace (neutral) and happy (positive). CONCLUSION: The results demonstrate the validity of the feature values and provide a theoretical basis for implementing human-computer interaction.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Electroencefalografía Límite: Humans Idioma: En Revista: Technol Health Care Asunto de la revista: ENGENHARIA BIOMEDICA / SERVICOS DE SAUDE Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Electroencefalografía Límite: Humans Idioma: En Revista: Technol Health Care Asunto de la revista: ENGENHARIA BIOMEDICA / SERVICOS DE SAUDE Año: 2022 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos