Your browser doesn't support javascript.
loading
The Effect of Apical Vertebra Position on Growing Rod Treatment: A Clinical and Finite Element Study.
Dursun, Gokay; Cetik, Riza M; Guzel, Dilek; Demirkiran, Halil Gokhan; Ramazanov, Rafik; Dede, Ozgur; Gurses, Ercan; Yazici, Muharrem.
Afiliación
  • Dursun G; Department of Orthopedics and Traumatology, Hacettepe University Hospital.
  • Cetik RM; Department of Orthopedics and Traumatology, Sandikli State Hospital, Afyonkarahisar, Turkey.
  • Guzel D; Department of Aerospace Engineering, Middle East Technical University.
  • Demirkiran HG; Department of Orthopedics and Traumatology, Hacettepe University Hospital.
  • Ramazanov R; Department of Orthopedic Surgery, Cankaya Hospital, Ankara.
  • Dede O; Department of Orthopaedic Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, 06230 PA.
  • Gurses E; Department of Aerospace Engineering, Middle East Technical University.
  • Yazici M; Department of Orthopedics and Traumatology, Hacettepe University Hospital.
J Pediatr Orthop ; 42(6): e552-e558, 2022 Jul 01.
Article en En | MEDLINE | ID: mdl-35297388
BACKGROUND: Growing rods (GRs) is a commonly utilized technique for the management of early-onset scoliosis. The significance of the position of the apical vertebrae relative to the rods is not known. The purpose of this study is to analyze the potential effects of the position of the apical vertebrae in relation to the GRs on deformity control through plain radiographs and finite element analysis (FEA) modeling. METHODS: We identified 140 patients treated with GR between 2000 and 2018. Patients who had a congenital vertebral anomaly or <2-year follow-up were excluded. Curve magnitude, traction radiograph under general anesthesia (TRUGA) flexibility, apical rotation, the lengths of T1-12, T1-S1, and the instrumented segments were recorded. Patients were divided into 3 groups according to the apical position on the postoperative radiographs: group 1 (both pedicles are between the rods), group 2 (convex rod is between the apical vertebra pedicles), group 3 (both pedicles are lateral to the convex rod). FEA models were created simulating the 3 groups. Both radiographic and FEA data were analyzed to compare the deformity control and growth in each group. RESULTS: Fifty-eight patients were included in the final analyses (mean age 84 mo; range: 38 to 148). Ten patients (17%) were in group 1, 34 (59%) in group 2, and 14 (24%) in group 3. Difference between TRUGA flexibilities was statistically insignificant. Group 3 was the least successful in terms of both height gain and rotational control. FEA showed a decrease in rotation and displacement for every group, however, the residual rotation and displacement was highest in group 3. CONCLUSIONS: Bringing the apex in line with the GR increases the capacity of growth preservation as it results in largest height gain and better deformity control. FEA model demonstrated that distraction alone is inadequate for controlling rotation, and with increasing apical translation, residual rotation after distraction also increases. LEVEL OF EVIDENCE: Level III.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Escoliosis / Fusión Vertebral Límite: Aged80 / Humans Idioma: En Revista: J Pediatr Orthop Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Escoliosis / Fusión Vertebral Límite: Aged80 / Humans Idioma: En Revista: J Pediatr Orthop Año: 2022 Tipo del documento: Article Pais de publicación: Estados Unidos